《一元二次方程应用题分类练习九级数学上册.doc》由会员分享,可在线阅读,更多相关《一元二次方程应用题分类练习九级数学上册.doc(5页珍藏版)》请在三一办公上搜索。
1、-一元二次方程的应用一传播问题审题;设未知数;列方程;解方程;检验根是否符合实际情况;作答。1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人.2.*种植物的主干长出假设干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支.3.参加一次足球联赛的每两队之间都进展一场比赛,共比赛45场比赛,共有多少个队参加比赛.4.参加一次足球联赛的每两队之间都进展两次比赛,共比赛90场比赛,共有多少个队参加比赛.5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学.6
2、.一个小组有假设干人,新年互送贺卡,假设全组共送贺卡72,这个小组共有多少人.二平均增长率问题变化前数量1*n变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。2.*种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少.3.*种商品,原价50元,受金融危机影响,1月份降价10,从2月份开场涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。4.*药品经两次降价,零售价降为原来的一半,两次降价的百分率一样,求每次降价的百分率.5.为了绿化校园,*中学在2007年植树400棵,
3、方案到2021年底使这三年的植树总数到达1324棵,求该校植树平均每年增长的百分数。三商品销售问题售价进价=利润一件商品的利润销售量=总利润单价销售量=销售额1.*商店购进一种商品,进价30元试销中发现这种商品每天的销售量P(件)与每件的销售价*(元)满足关系:P=100-2*销售量P,假设商店每天销售这种商品要获得200元的利润,则每件商品的售价应定为多少元.每天要售出这种商品多少件.2.*玩具厂方案生产一种玩具熊猫,每日最高产量为只,且每日产出的产品全部售出,生产只熊猫的本钱为元,售价每只为元,且与*的关系式分别为R=500+30*,P=1702*。() 当日产量为多少时每日获得的利润为元
4、.() 假设可获得的最大利润为元,问日产量应为多少.3.*水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,假设每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,则每千克应涨价多少元.4.服装柜在销售中发现*品牌童装平均每天可售出件,每件盈利元。为了迎接六一儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价元,则平均每天就可多售出件。要想平均每天在销售这种童装上盈利1200元,则每件童装应降价多少元.5.西瓜经营户以元千克的价格购进一
5、批小型西瓜,以元千克的价格出售,每天可售出千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定本钱共元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元.四面积问题判断清楚要设什么是关键1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直角边的长。2.一个直角三角形的两条直角边相差5,面积是72,求斜边的长。3.一个菱形两条对角线长的和是10,面积是122,求菱形的周长结果保存小数点后一位4.为了绿化学校,需移植草皮到操场,假设矩形操场的长比宽多14米,面积是3200平方米则操场的长
6、为米,宽为米。5.假设把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为cm.6.一桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度一样,求这块台布的长和宽。7.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边剪短2cm,刚好变成一个正方形,这个正方形的边长是多少8.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影局部面积是原矩形面积的80,求所截去的小正方形的边长。9.大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各
7、剪去一个边长为1米的正方形后,剩下的局部刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购置这种铁皮每平方米需20元钱,问大叔购置这铁皮共花了多少元钱.10.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551。则道路的宽为增长率问题:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额到达了193.6万元,求这两个月的平均增长率.2、*种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染请你用学过
8、的知识分析,每轮感染中平均一台电脑会感染几台电脑.假设病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台.3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入少儿银行,到期后将本金和利息取出,并将其中的500元捐给希望工程,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入少儿银行,到期后将本金和利息取出,并将其中的500元捐给希望工程,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这
9、样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子5、市政府为了解决市民看病难的问题,决定下调药品的价格。*种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为商品定价:1、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,假设每件商品售价a元,则可卖出35010a件,但物价局限定每件商品的利润不得超过20%,商店方案要盈利400元,需要进货多少件.每件商品应定价多少.2、利达经销店为*工厂代销一种建筑材料这里的代销是指厂家先免费提供货源,待货物售出后再进展结算,未售出的由厂家负责处理。当每吨售价为260元时
10、,月销售量为45吨。该经销店为提高经营利润,准备采取降价的方式进展促销。经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。1当每吨售价是240元时,计算此时的月销售量;2在遵循薄利多销的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。3小静说:当月利润最大时,月销售额也最大。你认为对吗.请说明理由。3、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道*种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,假设国家征收附加税,每销售100元征税*元(叫
11、做税率*%), 则每年的产销量将减少10*万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少图1如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.4、春秋旅行社为吸引市民组团去湾风景区旅游,推出了如图1对话中收费标准.*单位组织员工去湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游.5、*玩具店采购人员第一次用100元去采购企鹅牌玩具,很快售完第二次去采购时发现批发价上涨了0.5元,用去
12、了150元,所购玩具数量比第一次多了10件两批玩具的售价均为2.8元问第二次采购玩具多少件.6、*商场试销一种本钱为60元/件的T恤,规定试销期间单价不低于本钱单价,又获利不得高于40%,经试销发现,销售量件与销售单价元/件符合一次函数,且时,;时,;1写出销售单价的取值围;2求出一次函数的解析式;3假设该商场获得利润为元,试写出利润与销售单价之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少.面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.则纸盒的高是多少.2、如图*
13、农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m。鸡场的面积能到达150m2吗.鸡场的面积能到达180m2吗.如果能,请你给出设计方案;如果不能,请说明理由。3假设墙长为m,另三边用竹篱笆围成,题中的墙长度m对题目的解起着怎样的作用3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.1要使这两个正方形的面积之和等于17cm2,则这段铁丝剪成两段后的长度分别是多少2两个正方形的面积之和可能等于12cm2吗 假设能,求出两段铁丝的长度;假设不能,请说明理由.行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车
14、由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。问甲、乙的速度各是多少2、甲、乙二人分别从相距20千米的A、B两地以一样的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的平安条件下平安行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件以下车还可以再次提速.4、甲、乙两人分别骑车从A,
15、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。工程问题:1、*公司需在一个月31天完成新建办公楼的装修工程如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成1求甲、乙两工程队单独完成此项工程所需的天数2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元在规定时间:A请甲队单独完成此项工程出B请乙队单独完成此
16、项工程;C请甲、乙两队合作完成此项工程以上三种方案哪一种花钱最少.2、搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开场搬运货物,丙开场帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间.列式子3、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,甲比乙跑得快,求甲、乙每分钟各跑几圈.4、*油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停顿注油,
17、乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时.动态几何:1、:如图3-9-3所示,在中,,点从点开场沿边向点以1cm/s的速度移动,点从点开场沿边向点以2cm/s的速度移动.1如果分别从同时出发,则几秒后,的面积等于4cm2.2如果分别从同时出发,则几秒后,的长度等于5cm.3在1中,的面积能否等于7cm2说明理由.杂题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个
18、选手参加.2、机械加工需要用油进展润滑以减少摩擦,*企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克为了建立节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进展攻关1甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克.2乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的根底上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%这样乙车间加工一台大型机械设备的实际耗油量下降到12千克问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克.用油的重复利用率是多少. z.