高温超导材料的特性测试和低温温度计实验报告材料.doc

上传人:李司机 文档编号:1090058 上传时间:2022-06-22 格式:DOC 页数:8 大小:275KB
返回 下载 相关 举报
高温超导材料的特性测试和低温温度计实验报告材料.doc_第1页
第1页 / 共8页
高温超导材料的特性测试和低温温度计实验报告材料.doc_第2页
第2页 / 共8页
高温超导材料的特性测试和低温温度计实验报告材料.doc_第3页
第3页 / 共8页
高温超导材料的特性测试和低温温度计实验报告材料.doc_第4页
第4页 / 共8页
高温超导材料的特性测试和低温温度计实验报告材料.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《高温超导材料的特性测试和低温温度计实验报告材料.doc》由会员分享,可在线阅读,更多相关《高温超导材料的特性测试和低温温度计实验报告材料.doc(8页珍藏版)》请在三一办公上搜索。

1、word实验二十三:高温超导材料的特性测试和低温温度计 2016.12.29一、 实验数据记录1.室温检测:表1.室温检测数据表铂电阻电压(mV)109.03铂电阻电流(mA)100.30Si半导体电阻电压(V)0.5155Si半导体电阻电流(A)100.00样品电压(mV)0.162样品电流(mA)10.0165温差电偶电阻0.0002.低温温度计对比数据及超导转变曲线数据:见下表降温U-pt/mVU-Si/V温差电偶/mV样品电压/mVT/K样品电阻105.000.54175.5700.148283.150.0148104.000.54805.4770.146280.700.0146103

2、.000.55455.3820.144278.250.0144102.000.56105.2880.143275.800.0143101.000.56745.0.142273.350.0142100.000.57405.1010.141270.900.014199.000.58035.0110.140268.440.014098.000.58704.9210.265.990.013997.000.59404.8290.263.540.013896.000.00004.7420.137261.090.013795.000.60644.6490.136258.640.013694.000.6131

3、4.5640.256.190.013593.000.61954.4800.253.730.013392.000.62654.3890.132251.280.013291.000.63304.3040.131248.830.013190.000.63944.2200.130246.380.013089.000.64654.1340.128243.930.012888.000.65304.0470.127241.480.012787.000.66003.9660.239.030.012686.000.66683.8810.125236.570.012585.000.67363.7970.12323

4、4.120.012384.000.68073.7170.122231.670.012283.000.68763.6340.121229.220.012182.000.69433.5540.120226.770.012081.000.70103.4740.119224.320.011980.000.70753.3960.118221.860.011879.000.71433.3200.116219.410.011678.000.72113.2430.115216.960.011577.000.72763.1710.114214.510.011476.000.73463.0940.113212.0

5、60.011375.000.74103.0200.112209.610.011274.000.74782.9460.110207.150.011073.000.75452.8740.109204.700.010972.000.76072.8080.108202.250.010871.000.76602.7480.107.800.010770.000.77272.6770.105.350.010569.000.77942.6070.104.900.010468.000.78602.5340.103192.440.010367.000.79282.4630.102.990.010266.000.7

6、9982.3900.100187.540.010065.000.00002.3180.185.090.009964.000.81302.2420.098182.640.009863.000.81922.1760.180.190.009762.000.82372.1300.096177.740.009661.000.82902.0760.095175.280.009560.000.00002.0.094172.830.009459.000.00001.9600.170.380.009358.000.85031.9290.092167.930.009257.000.85671.8650.165.4

7、80.009156.000.86211.8020.090.030.009055.000.86801.7510.088160.570.008854.000.87481.6950.086158.120.008653.000.88151.6230.155.670.008552.000.88821.5580.084153.220.008451.000.89491.4900.150.770.008350.000.90191.4290.148.320.008149.000.90951.3590.080145.860.008048.000.91571.2980.143.410.007947.000.9219

8、1.2450.078140.960.007846.000.92761.1910.510.007745.000.93341.1360.076136.060.007644.000.93901.0840.610.007543.000.94471.0320.131.150.007442.000.95090.9850.128.700.007341.000.95660.9290.072.250.007240.000.96220.8770.123.800.007139.000.96550.8320.070121.350.007038.000.97130.8020.069118.900.006937.000.

9、97660.7530.068116.450.006836.000.98200.7080.067113.990.006735.000.98710.6630.065111.540.006534.000.99200.6210.064109.090.006433.000.99990.5340.106.640.006332.001.00930.4570.062104.190.006231.001.01350.4080.101.740.005930.001.01960.3620.99.280.005528.711.02710.96.120.005128.651.0275.0.95.970.004828.6

10、11.02780.95.880.004628.561.02880.95.750.004228.551.02810.04095.730.004028.531.02830.95.680.003728.511.02820.03495.630.003428.501.02830.95.610.003128.491.02850.95.580.002428.481.02850.02095.560.002028.481.02850.01695.560.001628.461.02860.01395.510.001328.461.02860.95.510.001028.451.02870.00895.480.00

11、0828.441.02870.00595.460.000528.431.02870.00395.430.000328.411.02880.00195.390.000128.391.02890.00095.340.00003.液氮沸点监测数据:表2:液氮沸点监测数据铂电阻电压(mV)20.36铂电阻电流(mA)99.84Si半导体电阻电压(V)1.0713Si半导体电阻电流(A)100.01样品电压(mV)0.000样品电流(mA)10.0173温差电偶电阻0.000二、 实验数据分析、处理和结论1. 处理室温检测数据,给出三部分测量电路的电流、室温、室温下的超导样品的电阻:(1) 电流:铂电阻

12、:109.03mASi半导体电阻:100.00A样品电流:10.0165mA(2) 室温:T=2.4516*109.03+25.736=293.03K(3) 室温下,样品的电阻: R=0.162/10.0165=0.01622. 处理低温温度计对比数据,作图给出对比结果,总结三种温度计的特点:图1:Si电压-温度曲线Y=-0.0026x+1.2798 R2= 0.9994图2:温差电偶电压-温度曲线线性拟合:Y=0.0279x-2.6711 R2=0.990非线性拟合:Y=0.000057x2+0.0061x-0.75127 R2=0.9998结论:由图1:Si半导体电压随着温度呈线性相关,且

13、是负相关。由图2:温差电偶与温度成正相关,在拟合过程中发现,二次拟合要比一次的拟合精确的多。因此温差电偶电压应该与温度成二次关系。比较两图一直,Si半导体的温敏线性较好,成的是线性关系,温差电偶电压与温度成二次关系,铂电阻R与T成线性关系。3. 作图并用最小二乘法处理超导样品测量数据,给出转变温度。图3:样品电阻-温度曲线图4:样品电阻-温度电压(最小二乘法)Y=0.000048x+0.00109 R-Square=0.9994结论:由图3、4可知:随着温度下降,R首先以直线下降,在到达一定的温度时,斜率发生突变的点为转变温度。对于高温时的数据进行线性拟合,其近似一条直线。通过对于突变处的观察

14、,突变温度约为103K。4. 处理液氮沸点检测数据,给出液氮沸点,液氮温度下超导样品的电阻、三部分测量电路的电流,与温室数据对比,评测系统的精确度和稳定性。液氮的沸点77.60K超导样品电阻0.000Pt电阻电流99.84mASi半导体电流100.01A超导样品电流10.0165mAPt的电阻精确到:0.01mV 0.01mASi 半导体电阻精确到:0.0001V 0.01*10-6A 超导样品精确到:0.001Mv 0.0001Ma温差电偶温度计精确到:0.001Mv铂U最小 28.39mV ,I 最小为 99.84mA,绝对误差为 0.04%和0.01%硅电压最小:0.5155mV电流:100.01*10-6A ,绝对误差为 0.02%和0.01%样品的电流最小为10.0165mA,绝对误差0.001%所以数据中只有样品和电偶可以到0,所以整个系统的精度在于这两个数据的测量。且系统较为灵敏。稳定性:IPt=(100.30-99.84)/99.84=0.5%ISi=(100.01-100.00)/100.00=0.01%I样品=(10.173-10.165)/10.165=0.08%由此可见系统稳定性较好。三、 实验收获升温时:曲线轮廓与降温基本一致,但转折点明显提前了,原来大致103K,而升温时大致80K。.8 / 8

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号