基于matlab的图像边缘检测原理及应用.doc

上传人:李司机 文档编号:1131758 上传时间:2022-06-30 格式:DOC 页数:16 大小:460.50KB
返回 下载 相关 举报
基于matlab的图像边缘检测原理及应用.doc_第1页
第1页 / 共16页
基于matlab的图像边缘检测原理及应用.doc_第2页
第2页 / 共16页
基于matlab的图像边缘检测原理及应用.doc_第3页
第3页 / 共16页
基于matlab的图像边缘检测原理及应用.doc_第4页
第4页 / 共16页
基于matlab的图像边缘检测原理及应用.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《基于matlab的图像边缘检测原理及应用.doc》由会员分享,可在线阅读,更多相关《基于matlab的图像边缘检测原理及应用.doc(16页珍藏版)》请在三一办公上搜索。

1、 目录一 前言-二 边缘检测的与提取-1. 边缘检测的定义-2. 图像边缘检测算法的研究容-3. 边缘检测算子-3.1.Sobel算子-3.2.Canny算子-4. 基于Matlab的实验结果与分析-三图像边缘检测的应用-一.前言在实际图像边缘检测问题中,图像的边缘作为图像的一种根本特征,经常被应用到较高层次的图像应用中去。它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的根底。图像边缘是图像最根本的特征之一,往往携带着一幅图像的大局部信息。而边缘存在于图像的不规则构造和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像

2、边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘检测算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进展高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。该课程设计具体考察了两种最常用的边缘检测算子并运用MATLAB进展图像处理比较。二.边缘检测于算子1.边缘检测的定义图像边缘是图像最根本的特征,边缘在图像分析中起着重要的用。所谓边缘edge是指图像局部特征的不连续性。灰度或构造信息的突变称为边缘,例如:灰度级

3、的突变、颜色的突变、纹理结的突变。边缘是一个区域的完毕,也是另一个区域的开场,利用该征可以分割图像。 当人们看一个有边缘的物体时,首先感觉到的便是边缘,如一条理想的边缘应该具有如图2.1(a) 所示模型的特性。每个像素都处在灰度级跃变的一个垂直的台阶上例如图形中所示的水平线通过图像的灰度剖面图。 而实际上,诸如图像采集系统的性能、采样频率和获得图像的照明条件等因素的影响,得到的边缘往往是模糊的,边缘被模拟成具有斜坡面的剖面,如图2.1(b) 所示,在这个模型中不再有细线宽为一个像素的线条,而是出现了边缘的点包含斜坡中任意点的情况。由此可以看到:模糊的边缘使边缘的宽度较大,面清晰的边缘使边缘的宽

4、度较小。图像的边缘有方向的幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶导数或二阶导数来检测边缘,不同的是一阶导数认为最大值对应边缘位置,而二阶导数以过零点对应边缘位置。实际上,对于图像中的任意方向上的边缘都可以进展类似的分析。图像边缘检测中对任意点的一阶导数可以利用该点梯度的幅度来获得,二阶导数可以用拉普拉斯算子得到。 2.图像边缘检测算法的研究容图像边缘检测和分析可定义为应用一系列方法获取、校正、增强、变换、检测或压缩可视图像的技术。其目的是提高信息的相对质量,以便提取有用信息。图像边缘检测中的变换属于图像输入-图像输出

5、模式,图像边缘检测是一种超越具体应用的过程,任何为解决*一特殊问题而开发的图像边缘检测新技术或新方法,几乎肯定都能找到其他完全不同的应用领域。图像边缘检测的主要研究容包括:1 图像获得和抽样,其过人眼观察的视野获取图像的问题有:最常用的图像获取装置电视TV摄像机问题,对所获得信号进展独立的采样和数字化就可用数字形式表达景物中全部彩色容;电荷-耦合装置,用作图像传感器,对景物每次扫描一行,或通过平行扫描获得图像;选择正确的分辨力或采样密度,一幅图像实质上是二维空间中的信号,所以适用于信号处理的法则同样适用于图像边缘检测,在放射学中常常需要高分辨力,要求图像至少到达2048像素2048像素;灰度量

6、化,图像强度也必须进展数字化,通常以256级按1字节编码覆盖整个灰度,一般一幅灰度分辨力为8位,空间分辨力为512像素512像素的图像需0.25兆字节的存贮容量。2 图像分割,目的是把一个图像分解成它的构成成分,以便对每一目标进展测量。图像分割是一个十分困难的过程。但其测量结果的质量却极依赖于图像分割的质量。有两类不同的图像分割方法。一种方法是假设图像各成分的强度值是均匀的并利用这种均匀性;另一种方法寻找图像成分之间的边界,因而是利用图像的不均匀性。主要有直方图分割,区域生长,梯度法等。3 边界查索,用于检测图像中线状局部构造,通常是作为图像分割的一个预处理步骤。大多数图像边缘检测技术应用*种

7、形式的梯度算子,可应用对水平方向、垂直方向或对角线方向的梯度敏感的梯度算子,用它们的复合结果可检测任意方向的边界。4 图像增强和复原,用于改进图像的质量。不同的增强技术可以用于不同的目的,这取决于应用的类型。如果打算直接观察图像,可以增强比照度。如果是为了进一步对图像作数字处理,可以选择分割一种突出各图像成分之间的边界和线状构造的运算。该技术可以是整体的或局部的,也可以在*个频域或者空间域中进展。图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的局部。5 图像分类识别, 图像分类识别属于模式识别的畴,其主要容是图像经过*

8、些预处理增强、复原、压缩后,进展图像分割和特征提取,从而进展判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法构造模式分类,近年来新开展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。6 图像变换: 由于图像阵列很大,直接在空间域中进展处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理如傅立叶变换可在频域中进展数字滤波处理。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像边缘检测中也有着广泛而有效的应用。3.

9、边缘检测算子3.1 Sobel算子索贝尔算子Sobel operator是图像处理中的算子之一,主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.该算子包含两组3*3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,G*及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。然后可用以下公式计算梯度方向。在以上例子中,如果以上的角度等于零,即代表图像该处拥有纵向边

10、缘,左方较右方暗。Sobel 算子有两个,一个是检测水平边沿的;另一个是检测垂直平边沿的。 Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的。各向同性Sobel算子比普通Sobel算子的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。美中缺乏的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进展处理,由于Sobel算子没有严格地模拟人的视觉生理特征

11、,所以提取的图像轮廓有时并不能令人满意。在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的局部,正是这个局部将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。Sobel边缘算子的卷积和图3.2所示,图像中的每个像素都用这两个核做卷积。这两个核分别对垂直边缘和水平边缘响应最大,两个卷积的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。-1-2-1000121-101-202-101图3.2Sobel边缘算子Sobel算子认为邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的

12、影响也不同。一般来说,距离越大,产生的影响越小。3.2 Canny算子检测阶跃边缘的根本思想是在图像中找出具有局部最大梯度幅值的像素点。图像边缘检测必须满足两个条件:一是必须能有效地抑制噪声;二是必须尽量准确确定边缘的位置。既要提高边缘检测算子对边缘的敏感性,同时也提高了对噪声的敏感。1.Canny边缘检测根本原理:(1)具有既能滤去噪声又保持边缘特性的边缘检测最优滤波器,其采用一阶微分滤波器。采用二维高斯函数的任意方向上的一阶方向导数为噪声滤波器,通过与图像卷积进展滤波;然后对滤波后的图像寻找图像梯度的局部最大值,以此来确定图像边缘。根据对信噪比与定位乘积进展测度,得到最优化逼近算子。这就是

13、Canny边缘检测算子。(2)类似与MarrLOG边缘检测方法,也属于先平滑后求导数的方法。2.Canny边缘检测算法:step1:用高斯滤波器平滑图象;step2:用一阶偏导的有限差分来计算梯度的幅值和方向;step3:对梯度幅值进展非极大值抑制;step4:用双阈值算法检测和连接边缘。其数学描述如下:step1:二维为高斯函数为:=在*一方向n上是的一阶方向导数为:= nn=式中:n式方向矢量,是梯度矢量。将图像与作卷积,同时改变n的方向,*取得最大值时的n就是正交于检测边缘的方向。step2:= , =*=反映了图像(*,y)点处的边缘强度,是图像(*,y)点处的法向矢量。step3:仅

14、仅得到全局的梯度并缺乏以确定边缘,因此为确定边缘,必须保存局部梯度最大的点,而抑制非极大值。non-Ma*iMa suppression,NMS解决方法:利用梯度的方向。图示-非极大值抑制四个扇区的标号为0到3,对应3*3邻域的四种可能组合。在每一点上,邻域的中心像素M与沿着梯度线的两个像素相比。如果M的梯度值不比沿梯度线的两个相邻像素梯度值大,则令M=0。step4:减少假边缘段数量的典型方法是对G(*,y)使用一个阈值。将低于阈值的所有值赋零值。但问题是如何选取阈值.解决方法:双阈值算法进展边缘判别和连接边缘。首先是边缘判别: 但凡边缘强度大于高阈值的一定是边缘点;但凡边缘强度小于低阈值的

15、一定不是边缘点;如果边缘强度大于低阈值又小于高阈值,则看这个像素的邻接像素中有没有超过高阈值的边缘点,如果有,它就是边缘点,如果没有,它就不是边缘点。其次是连接边缘: 双阈值算法对非极大值抑制图像作用两个阈值1和2,且212,从而可以得到两个阈值边缘图像G1(*,y)和G2(*,y)。由于G2(*,y)使用高阈值得到,因而含有很少的假边缘,但有连续(不闭合)。双阈值法要在G2(*,y)中把边缘连接成轮廓,当到达轮廓的端点时,该算法就在G1(*,y)的8邻点位置寻找可以连接到轮廓上的边缘,这样,算法不断地在G1(*,y)中收集边缘,直到将G1(*,y)连接起来为止。实际上,还有多种边缘点判别方法

16、,如:将边缘的梯度分为四种:水平、竖直、45度方向、135度方向。各个方向用不同的邻接像素进展比较,以决定局部极大值。假设*个像素的灰度值与其梯度方向上前后两个像素的灰度值相比并不是最大的,则将该像素置为零,即不是边缘。此外,在实际应用中,检测效果还与滤波模板大小有关,当时有较好的检测效果。Canny算子检测方法的优点:低误码率,很少把边缘点误认为非边缘点;高定位精度,即准确地把边缘点定位在灰度变化最大的像素上;抑制虚假边缘。在这几种算法中除Roberts算子外都使用了图像模板,模板运算是图像的一种处理手段邻域处理,有许多图像增强效果都可以采用模板运算实现,如平滑效果,中值滤波,油画效果,图像

17、的凹凸效果等等。在模板运算中,首先定义一个模板,模板的大小以3*3的较常见,也有2*2, 5*5或更大尺寸的。运算时,把模板中心对应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素进展数学运算,算出的结果作为输出图像对应像素点的值。这些经典的边缘提取算子,虽然各自不同,有不同的长处,但是它们也有共同的特点:每种算子对应的预定义的边缘是它们最适合使用的情形,也就是说它们有针对性。这一点在应用中是有优越性的,它们的针对性可以帮助我们完成特定的任务。同时这也是算子的局限性,对于一般的问题或者情况未知的问题,预定义边缘的方法可能不会到达最正确效果。5. 基于Matlab的实验结果

18、与分析qq=imread(lena.jpg); %读取图像figure(1)imshow(qq);title(原图像);qq=rgb2gray(qq);m,n=size(qq); %用Sobel微分算子进展边缘检测pp = edge(qq,sobel);figure(2)imshow(pp);title(sobel边缘检测得到的图像); ww= edge(pp,canny); %用canny微分算子进展边缘检测figure(3)imshow(ww);title(canny边缘检测得到的图像);原图sobel边缘检测canny边缘检测分析比较:1、sobel算子根据像素点上下、左右邻点灰度值加权

19、值,在边缘处打到极大值这一现象检测边缘。对噪声具有平滑作用,提供较为准确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高的时候,是一种较为常用的边缘检测的方法。2.canny算子是边缘检测中最具有代表的一种局部极值边缘检测无论从视觉效果还是客观评价来看,canny算子提取的边缘线性连接程度较好,对此类的边缘提取的比较完整,边缘细腻 三图像边缘检测应用领域图像是人类获取和交换信息的主要来源,因此,图像边缘处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动围的不断扩大,图像边缘检测与提取处理的应用领域也将随之不断扩大。数字图像边缘检测(Digital ImageProcessi

20、ng)又称为计算机图像边缘检测,它是指将图像信号转换成数字信号并利用计算机对其进展处理的过程。数字图像边缘检测最早出现于20世纪50年代,当时的电子计算机已经开展到一定水平,人们开场利用计算机来处理图形和图像信息。数字图像边缘检测中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像边缘检测处理方法有图像增强、锐化、复原、编码、压缩、提取等。数字图像边缘检测与提取处理的主要应用领域有:1航天和航空技术方面的应用,数字图像边缘检测技术在航天和航空技术方面的应用,除了月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。从60年代末以来,美国及一些国际组织发射了资源遥感卫星

21、(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。现在改用配备有高级计算机的图像边缘检测系统来判读分析首先提取出其图像边缘,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。2生物医学工程方面的应用,数字图像边缘检测在生物医学工程方面的应用十分广泛,而且很有成效。除了CT技术之外,还有一类是对阵用微小图像的处理分析,如红细胞、白细胞分类检测,染色体边缘分析,癌细胞特征识别等都要用到边缘的判别。此外,在*光肺部图像增强、超声波图像边缘检测、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像边

22、缘分析处理技术。3公安军事方面的应用,公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前己投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别主要是汽车牌照的边缘检测与提取技术都是图像边缘检测技术成功应用的例子。在军事方面图像边缘检测和识别主要用于导弹的准确制导,各种侦察照片的判读,对不明来袭武器性质的识别,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等; 4交通管理系统的应用,随着我国经济建立的蓬勃开展,城市的人口和机动车拥有量也在急剧增长,交通拥挤堵塞现象日趋严重,交通事故时有发生。交通问题已经成为城市管理工作

23、中的重大社会问题,阻碍和制约着城市经济建立的开展。因此要解决城市交通问题,就必须准确掌握交通信息。目前国常见的交通流检测方法有人工监测、地埋感应线圈、超声波探测器、视频监测4类。其中,视频监测方法比其他方法更具优越性。视频交通流检测及车辆识别系统是一种利用图像边缘检测技术来实现对交通目标检测和识别的计算机处理系统。通过对道路交通状况信息与交通目标的各种行为如违章超速,停车,超车等等的实时检测,实现自动统计交通路段上行驶的机动车的数量、计算行驶车辆的速度以及识别划分行驶车辆的类别等各种有关交通参数,到达监测道路交通状况信息的作用。图像边缘检测应用在视频交通流检测和车辆识别系统概述:1.视频交通流

24、量检测及车辆识别系统是一个集图像边缘检测系统和信息管理系统为一体的综合系统。计算机图像边缘检测主要由图像输入,图像存储和刷新显示,图像输出和计算机接口等几大局部组成,这些局部的总体构成方案及各局部的性能优劣直接影响处理系统的质量。图像边缘检测的目标是代替人去处理和理解图像,因此实时性,灵活性,准确性是对系统的主要要求。2.通过摄像机将道路交通流图像捕捉下来,再将这些捕捉到的序列图像送入计算机进展图像边缘检测、图像分析和图像理解,从而得到交通流数据和交通状况等交通信息。3.应用举例对于车牌识别技术的研究现状,车牌的自动识别是计算机视觉、图像边缘检测与模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节,主要包括车牌定位、字符车牌分割和车牌字符识别三个关键环节。兴旺LPR系统在实际交通系统中已成功应用,而我国的开发应用进展缓慢,根本停留在实验室阶段。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号