《基于某ABAQUS地悬臂梁地弹塑性弯曲分析报告.doc》由会员分享,可在线阅读,更多相关《基于某ABAQUS地悬臂梁地弹塑性弯曲分析报告.doc(10页珍藏版)》请在三一办公上搜索。
1、基于ABAQUS的悬臂梁的弹塑性弯曲分析1. 问题描述考虑端点受集中力F作用的矩形截面的悬臂梁,如图1所示,长度l=10m,高度h=1m,宽度b=1m。材料为理想弹塑性钢材如图2,并遵守Mises屈服准如此,屈服强度为,弹性模量,泊松比。图1 受集中力作用的悬臂梁 图2 钢材的应力-应变行为首先通过理论分析理想弹塑性材料悬臂梁的弹塑性弯曲,得到悬臂梁的弹塑性弯曲变形的规律和塑性区形状,确定弹性极限载荷和塑性极限载荷;其次利用ABAQUS模拟了该悬臂梁受集中载荷作用的变形过程,得出弹性极限载荷、塑性极限载荷、塑性区形状和载荷-位移曲线,与理论分析的结果进展比照,验证有限元分析的准确性。2. 理论
2、分析对于矩形截面Euler-Bernoulli梁,受弯矩M作用,如图3所示,根据平截面假定,有图3 矩形截面梁受弯矩M的作用 1其中为弯曲后梁轴的曲率,规定梁的挠度以与y同向为正,如此在小变形情况有 2当弯矩M由零逐渐增大时,起初整个截面都处于弹性状态,这是Hooke定律给出 3再由平衡方程,可得到 4其中,是截面的惯性矩。将带入3式,可知显然,最外层纤维的应力值最大。当M增大时,最外层纤维首先达到屈服,即 5这时的弯矩是整个截面处于弹性状态所能承受的最大弯矩,即为弹性极限弯矩,它等于 6对应的曲率可由式4求得 7当时,梁的外层纤维的应变继续增大,但应力值保持为不再增加,塑性区将逐渐向内扩大。
3、弹塑性的交界面距中性面为。在弹性区:,;在塑性区:,在弹塑性区的交界处,因而,由此可求出此时的曲率和弯矩分别为 8 9从这两个式子消去,可得时的弯矩-曲率关系为 10或 12当M继续增加使得时,截面全部进入塑性状态。这时,而。当梁的曲率无限增大时,弯矩趋向一极限值,此极限值即为塑性极限弯矩。可得矩形截面梁的塑性极限弯矩为 13采用以下量纲为一的量:, 14矩形截面梁的弯矩-曲率关系可以写成 152.2 梁在横向载荷作用下的弹塑性弯曲考虑端点受集中力F作用的矩形截面悬臂梁,假如本例中满足此要求,如此梁中的剪应力可以忽略,平截面假定近似成立,于是就可以利用弹塑性纯弯曲的分析结果来研究横向载荷作用下
4、的弹塑性弯曲问题。本例中,显然根部弯矩最大,因而根部截面的最外层纤维图1中的A点与B点应力的绝对值最大。当F增加时,A、B点将进入塑性,这时的载荷是梁的弹性极限载荷 16当时,弯矩仍沿梁轴方向呈线性分布。设在处有,如此。在X围内的各截面,都有局部区域进入塑性,且由式9可知各截面上弹塑性区域的交界限决定于 17其中已用到。式17证明,弹塑性区域的交界限是两段抛物线。当时,梁的根部x=0处的弯矩达到塑性极限弯矩,即,这时梁内塑性区如图4中的阴影局部所示,且塑性区域分界限连接成一条抛物线,梁的根部形成塑性铰。这时,由于根部的曲率可以任意增长,悬臂梁丧失了进一步承载的能力。因此,即为悬臂梁的极限载荷,
5、悬臂梁不能承受超过的载荷。图4 受集中力作用的悬臂梁在小挠度情形下,利用的关系可以求得梁的挠度。具体来说,在悬臂梁受端部集中载荷的问题中,以带入式15可得 18其中,利用边界条件和在处的关于y和的连续性条件,可对式18积分两次,得到梁端挠度的表达式 19其中是f=1即时的,可按材料力学方法求出为 20当即时,式19给出相应的梁端挠度为 21代入题目所给数据可得到3. 有限元分析3.1 有限元模型此问题属于平面应力问题,采用二维有限元模型,选取平面图形作为分析模型,其长度l=10m,高度h=1m。3.2 材料属性定义圆筒材料为钢材,弹性模量200Gpa,屈服强度380Mpa,泊松比0.3,截面属
6、性选用实体、匀质,采用理想弹塑性本构关系。 3.3 分析步的定义由于是非线性分析,Step中设置分析过程和输出要求选择静态分析,最小分析步取0.05,最大分析步取0.1,输出要求采用默认输出。3.4载荷施加和边界条件布置载荷边界条件和位移边界条件,将模型左端固支,右上端顶点施加集中力载荷。3.5 网格划分按照四节点四边形平面应力单元CPS4I如图5划分网格,定义不同大小位移载荷进展分析计算,分析采用Mises准如此。图5 悬臂梁的有限元网格3.6 结果与分析3.6.1 弹性极限载荷和塑性载荷压力确实定当取时,等效塑性应变分布如图6所示,结构的等效塑性应变均为0,可以看出系统处于弹性状态并未产生
7、塑性应变,此时悬臂梁处于弹性阶段。图6等效塑性应变云图当取时,等效塑性应变分布如图7所示,最大等效塑性应变均为3.811e-6,最小等效塑性应变为0,可以看出系统局部处于弹性状态,局部处于塑性阶段,此时结构处于弹塑性阶段。图7等效塑性应变云图当取时,应力分布如图8所示,可以看出根部还没有形成塑性铰,即根部还没有完全进入塑性,也就是说系统局部处于弹性状态,局部处于塑性阶段,此时结构仍处于弹塑性阶段。图8应力云图当取时,应力分布如图9所示,可以看出根部形成塑性铰,悬臂梁不能再承受超过的载荷。图9应力云图综上分析可知,有限元模拟所得的弹性极限载荷在之间,塑性极限载荷在之间。与理论解相比,有限元所得弹
8、性极限载荷的误差大约为,有限元所得塑性极限压力的误差大约为,与理论解相比,误差较小。不仅如此,图9明确,弹塑性区域的交界限是两段抛物线,与塑性力学解式17一样。3.6.2 悬臂梁弹塑性弯曲过程分析对于这种悬臂梁在端部受集中力的问题,在ABAQUS中施加位移载荷模拟,取位移,可以得到载荷作用点的载荷-位移曲线,如图10所示,图10 有限元所得的载荷-位移曲线将有限元所得的载荷-位移曲线与式19相比可知,有限元中悬臂梁的变形与理论分析结果根本一致,刚开始都是弹性阶段,随着载荷增大,进入弹塑性阶段,直到载荷增大到塑性极限载荷,根部形成塑性铰,悬臂梁丧失进一步承载的能力。由上图也可看出,大约为,大约为
9、,同时可以得到大约为13.6mm,大约为30.0mm,与理论解相比,弹性极限位移误差大约为,塑性极限位移误差大约为,位移误差相对于载荷误差较大。原因可能有:一是随着位移增加,可能会进入弹塑性大挠度情形;二是模型所采用的单元不独有弯曲应力,即不满足平截面假设。4. 总结首先,本文通过理论分析理想弹塑性材料悬臂梁受集中力作用的弹塑性弯曲,得到悬臂梁的弹塑性弯曲变形的一般规律和塑性区形状,确定了弹性极限载荷和塑性极限载荷;其次,利用ABAQUS模拟了该悬臂梁受集中载荷作用的变形过程,得出弹性极限载荷、塑性极限载荷、塑性区形状和载荷-位移曲线,与理论分析的结果进展比照,结果相差不大,验证了有限元分析悬臂梁弹塑性弯曲的准确性。