客户关系管理系统实验报告材料.doc

上传人:李司机 文档编号:1132101 上传时间:2022-06-30 格式:DOC 页数:35 大小:3.44MB
返回 下载 相关 举报
客户关系管理系统实验报告材料.doc_第1页
第1页 / 共35页
客户关系管理系统实验报告材料.doc_第2页
第2页 / 共35页
客户关系管理系统实验报告材料.doc_第3页
第3页 / 共35页
客户关系管理系统实验报告材料.doc_第4页
第4页 / 共35页
客户关系管理系统实验报告材料.doc_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《客户关系管理系统实验报告材料.doc》由会员分享,可在线阅读,更多相关《客户关系管理系统实验报告材料.doc(35页珍藏版)》请在三一办公上搜索。

1、实验一实验名称:数据挖掘软件认识与图形分析实验目的:探索Drud1n,挖掘以下问题的答案:1血压与年龄的关系2血压与性别的关系3血压与药品的关系4血压与血钠的关系5血压与血钾的关系6血压与胆固醇的关系7药品与血压、年龄、性别、胆固醇之间的关系实验报告内容主要内容: 实验目的,实验步骤,实验结论配图,实验小结步骤图:实验步骤:第一步,打开SPSS Clementine Client 11.1,点击屏幕下方工具栏中的“数据源按钮,双击下方的“可变文件;第二步,双击屏幕中间的“可变文件进入编辑框,点击“文件右边的“按钮,打开“Demos文件夹,选中“DRUG1n之后打开;第三步,点击屏幕下方工具栏中

2、的“输出按钮,双击下方的“表,就会出现一个与可变文件相关联的表文件,双击表文件再点击编辑器下方的“执行即可看到整个数据的情况。第四步,开始依次解决问题,分析各数据之间的关系。问题一:分析血压与年龄的关系。散点图点击屏幕下方工具栏中的“图形按钮,双击“散点图,在屏幕中间出现散点图的按钮,右击“DRUG1n选择连接,与散点图连接,双击散点图按钮,出现该图形的编辑器,“X字段选择“Age,“Y字段选择“BP,确定之后点击屏幕上方工具栏的执行按钮,即可看到血压与年龄之间的关系。直方图点击屏幕下方工具栏中的“图形按钮,双击“直方图,在屏幕中间出现直方图的按钮,右击“DRUG1n选择连接,与直方图连接,双

3、击直方图按钮,出现该图形的编辑器,“字段选择“Age,“颜色选择“BP,确定之后点击屏幕上方工具栏的执行按钮,即可看到血压与年龄之间的关系。从图表中我们可以在20到30岁之间的血压正常的人数很少,根本上都是偏高或偏低,而在30到50岁之间的血压都偏低。总的来说,不管在哪个年龄段血压都有高有低也有正常值,所以血压与年龄没有很大的关系。问题二:分析血压与性别的关系。散点图点击屏幕下方工具栏中的“图形按钮,双击“散点图,在屏幕中间出现散点图的按钮,右击“DRUG1n选择连接,与散点图连接,双击散点图按钮,出现该图形的编辑器,“X字段选择“BP,“Y字段选择“Sex,确定之后点击屏幕上方工具栏的执行按

4、钮,即可看到血压与性别之间的关系。分布图点击屏幕下方工具栏中的“图形按钮,双击“分布图,在屏幕中间出现分布图的按钮,右击“DRUG1n选择连接,与分布图连接,双击分布图按钮,出现该图形的编辑器,“字段选择“BP,“颜色选择“Sex,确定之后点击屏幕上方工具栏的执行按钮,即可看到血压与性别之间的关系。从图表中我们可以发现那根平滑线在低水平的下方,不管是男性还是女性他们的血压都是比拟低的,血压与性别的关系也很难表现出来。问题三:血压与药品的关系从图中我们可以发现高血压与A、B和Y药品有关;低血压与C、X和Y药品有关;正常血压与X和Y有关。而且药品Y对所有的血压值都有关系,从中可以看出A和D药品会导

5、致高血压;C药品会导致低血压。问题四:血压与血钠的关系从图表中我们可以发现血钠的不同含量会导致血压的上下,但是不管在什么X围内,血压都会相对均匀分布,所以我认为血压与血钠之间的影响关系不是很明显。问题五:血压与血钾的关系图中表示了不同血钾含量下血压不同值的计数。有的含量下上下血压与正常血压均匀分布,但是有的情况下就会出现高血压或者低血压。总的来说,血压与血钾之间有一定的关系,但是并不是很明显的能够区分开来。问题六:血压与胆固醇的关系从图表中我们可以发现,血压在高、低和正常这三者的时候,胆固醇的正常值和高值都会出现,而且分布比拟均匀;所以,不管血压的上下,其对胆固醇的影响并不大,反过来胆固醇是高

6、还是正常对血压上下正常的影响很小。问题七:药品与血压、年龄、性别、胆固醇之间的关系从图中我们可以发现,血钠和血钾在所有的药品中的含量均接近于0,说明药品中血钠和血钾的含量很少。上面的锯齿形线表示药品与年龄的关系,A药品的使用X围在20到50岁之间;B药品的使用X围在50到60岁之间,其他的三种药品在每个年龄段根本上都会使用到.实验小结:本次实验中我们第一次接触到这种数据分析和挖掘的软件,首先很容易操作,通过软件来形成图形,将每个数据之间的关系都可以用图表表示出来,对于比拟简单的图形就可以很容易就发现数据之间的关系,类似于直方图,你可以很清楚的发现每个局部所占的比例以与横轴与纵轴之间的关系。通过

7、本次的实验我们以后在数据挖掘方面会有一个很好地利用工具,而且能够为我们的结论提供理论支持。实验二实验名称:关联规如此和决策树分析实验目的:探索BASKETS1n,利用关联分析模型和决策树模型,挖掘以下问题BASKET1n后的类型键GRItree结论:24岁的人不是健康食品的购置者,=24岁但是已婚的也不是健康食品的购置者。Rule规如此用于 T - 包含 1 个规如此规如此 1 用于 T if age = 24 and homeown = NO then T规如此用于 F - 包含 2 个规如此规如此 1 用于 F if age 24 then F默认: FHealthy导出实验小结:通过本次

8、试验,可以帮助我们更好的去分析一些数据的问题,当我们遇到数据很多并且关联不大的时候,我们就可以通过这个软件进展分析,其中像网络图和决策树都可以很直观的表现出不同商品之间的关系,让人一目了然。学习这个软件可以使我们对自己所掌握的数据比拟了解以与它们之间的种种联系,这样更有助于我们进展数据挖掘。实验三实验名称:决策树专业修整和聚类分析实验目的:1.决策树进展剪枝、修改出错本钱,并与简单决策树进展准确度比照2.探索DRUG1n,使用聚类模型对该数据进展聚类分析实验步骤:对决策树再次进展分析。第一步,将C5.0模式改成专家,点击决策树,建立NO-CUT未修改的决策树第二步,Tree和no-cut连接到

9、类型后面,在两之间放大镜进展准确度的分析,比照两者之间的差异我们会发现准确度从93.8%提高到94.5%。第四步,进入编辑框,模式改为简单,点击本钱第五步,使用误分类损失,将第一行第二列的值改为0.4,再次回到模型点击执行,会出现如下的决策树,它拥有更多的分支将TREE和NE-COST 的后面分别连接一个矩阵,将矩阵的行设置为HEALTHY,列设置为C-HEALTHY。分别会产生两X表格,将35条减至15条,防止了本钱费用的增加。本钱误分类损失比照第七步,打开D1n,点击类型,选取读取值,方向全部设置为输入在建模中点击K-MEANS、两步法和Knhonen。两步法实验四实验名称:神经网络分析实

10、验目的1、学会使用神经网络分析哪些商品值得做促销?实验步骤第一步,创建可变文件,并选取GOODS1n中的数据,在GOODS1n后添加表,确定并执行,可以看到商品的促销所带来的增长率,在表中可以看出促销前后的销量比照图。第二步在GOODS1n后增加一个INCREASE导出图,设置其模型为:连续;公式为:(After - Before) / Before * 100。第二步,设置其方向,设置After方向为无,INCREASE方向为输出。第三步增加神经网络图,设置其准确度为95,浏览有如下神经网络的结果图:第三步,继续Goods2n,将数据过滤,增加过滤将After过滤,可通过表看出After已过滤出去。在神经网络图后增加FORMAT导出设置其字段类型为:连续并设置其公式为:1 / (1 + exp( - $N-INCREASE)。第四步,FORMAT后增加一个选择,设置其条件为FORMAT 0.99999,得出如下表格,所示即为可促销商品。结论:选择完毕以后我们通过表对选择的结果进展执行,上图的执行结果就是剩下的最值得推销的商品。步骤图实验小结:本次试验是通过对商品文件进展分析,从而来了解到底哪些商品是最值得促销的,我们需要对字段进展归一处理,使它们的值接近一表示出来。我们在导出字段的时候,要特别注意导出为和字段的类型并且编辑导出的公式,学会用公式编辑器,过程要细心和耐心。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号