平面几何辅助线添加技法总结与例题详细讲解.doc

上传人:李司机 文档编号:1143380 上传时间:2022-07-04 格式:DOC 页数:8 大小:542.50KB
返回 下载 相关 举报
平面几何辅助线添加技法总结与例题详细讲解.doc_第1页
第1页 / 共8页
平面几何辅助线添加技法总结与例题详细讲解.doc_第2页
第2页 / 共8页
平面几何辅助线添加技法总结与例题详细讲解.doc_第3页
第3页 / 共8页
平面几何辅助线添加技法总结与例题详细讲解.doc_第4页
第4页 / 共8页
平面几何辅助线添加技法总结与例题详细讲解.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《平面几何辅助线添加技法总结与例题详细讲解.doc》由会员分享,可在线阅读,更多相关《平面几何辅助线添加技法总结与例题详细讲解.doc(8页珍藏版)》请在三一办公上搜索。

1、 第一讲 注意添加平行线证题在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况.1 为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1设P、Q为线段BC上两点,且BPCQ,A为BC外一动点(如图1).当点A运动到使BAPCAQ时,ABC是什么三角形?试证明你的结论.答: 当点A运动到使BAPCAQ时,ABC为等腰三角形.证

2、明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.在DBPAQC中,显然DBPAQC,DPBC.由BPCQ,可知DBPAQC.有DPAC,BDPQAC.于是,DABP,BAPBDP.则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故ABDP.所以ABAC.这里,通过作平行线,将QAC“平推”到BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.例2如图2,四边形ABCD为平行四边形,BAFBCE.求证:EBAADE. 证明:如图2,分别过点A、B作ED、EC的平行线,得交点P,连PE.由AB CD,易知PBAECD.有PAED,PBEC.显然,四边形PBCE、PADE

3、均为平行四边形.有BCEBPE,APEADE.由BAFBCE,可知BAFBPE.有P、B、A、E四点共圆.于是,EBAAPE. 所以,EBAADE.这里,通过添加平行线,使已知与未知中的四个角通过P、B、A、E四点共圆,紧密联系起来.APE成为EBA与ADE相等的媒介,证法很巧妙.2 为了改变线段的位置利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3在ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PMPNPQ.证明:如图3,过点P作AB的平行线交BD于F,

4、过点F作BC的平行线分别交PQ、AC于K、G,连PG.由BD平行ABC,可知点F到AB、BC两边距离相等.有KQPN. 显然,可知PGEC.由CE平分BCA,知GP平分FGA.有PKPM.于是,PMPNPKKQPQ.这里,通过添加平行线,将PQ“掐开”成两段,证得PMPK,就有PMPNPQ.证法非常简捷.3 为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4设M1、M2是ABC的BC边上的点,且BM1CM2.任作一直线分别交AB、AC、AM1、AM2于P、Q、N1、N2

5、.试证:.证明:如图4,若PQBC,易证结论成立. 若PQ与BC不平行,设PQ交直线BC于D.过点A作PQ的平行线交直线BC于E.由BM1CM2,可知BECEM1EM2E,易知,.则.所以,.这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.例5AD是ABC的高线,K为AD上一点,BK交AC于E,CK交AB于F.求证:FDAEDA.证明:如图5,过点A作BC的平行线,分别交直线DE、DF、BE、CF于Q、P、N、M. 显然,.有BDAMDCAN. (1)由,有AP. (2)由,有AQ. (3)对比(1)、(2)、(3)有APAQ. 显然AD为PQ的中

6、垂线,故AD平分PDQ.所以,FDAEDA.这里,原题并未涉与线段比,添加BC的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP与AQ的相等关系显现出来.4 为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6在ABC中,AD是BC边上的中线,点M在AB边上,点N在AC边上,并且MDN90.如果BM2CN2DM2DN2,求证:AD2(AB2AC2).证明:如图6,过点B作AC的平行线交ND延长线于E.连ME.由BDDC,可知EDDN.有BEDCND. 于是,BENC.显然,MD为EN的中垂线.有 EMMN.由BM2B

7、E2BM2NC2MD2DN2MN2EM2,可知BEM为直角三角形,MBE90.有ABCACBABCEBC90.于是,BAC90. 所以,AD2(AB2AC2).这里,添加AC的平行线,将BC的以D为中点的性质传递给EN,使解题找到出路.例7如图7,AB为半圆直径,D为AB上一点,分别在半圆上取点E、F,使EADA,FBDB.过D作AB的垂线,交半圆于C.求证:CD平分EF. 证明:如图7,分别过点E、F作AB的垂线,G、H为垂足,连FA、EB.易知DB2FB2ABHB,AD2AE2AGAB.二式相减,得DB2AD2AB(HBAG),或 (DBAD)ABAB(HBAG). 于是,DBADHBAG

8、,或DBHBADAG.就是DHGD. 显然,EGCDFH.故CD平分EF.这里,为证明CD平分EF,想到可先证CD平分GH.为此添加CD的两条平行线EG、FH,从而得到G、H两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB、AN、AC构成一组直线束,DE是与BC平行的直线.于是,有,即或.此式说明,DMME的充要条件是 BNNC. 利用平行线的这一性质,解决某些线段相等的问题会很漂亮.例8如图9,ABCD为四边形,两组对边延长后得交点E、F,对角线BDEF,AC的延长线交EF于G.求证:EGGF.

9、证明:如图9,过C作EF的平行线分别交AE、AF于M、N.由BDEF,可知MNBD.易知SBEFSDEF. 有SBECSKG *5DFC.可得MCCN. 所以,EGGF.例9如图10,O是ABC的边BC外的旁切圆,D、E、F分别为O与BC、CA、AB的切点.若OD与EF相交于K,求证:AK平分BC.证明:如图10,过点K作BC的行平线分别交直线AB、AC于Q、P两点,连OP、OQ、OE、OF.由ODBC,可知OKPQ. 由OFAB,可知O、K、F、Q四点共圆,有 FOQFKQ.由OEAC,可知O、K、P、E四点共圆.有EOPEKP.显然,FKQEKP,可知FOQEOP.由OFOE,可知 RtO

10、FQRtOEP. 则OQOP.于是,OK为PQ的中垂线,故QKKP. 所以,AK平分BC.综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.第二讲 巧添辅助圆 在某些数学问题中,巧妙添置辅助圆常可以沟通直线形和圆的在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆的若干思路.1 挖掘隐含的辅助圆解题 有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在ABC中,ABAC,D是底边

11、BC上一点,E是线段AD上一点且BED2CEDA.求证:BD2CD.分析:关键是寻求BED2CED与结论的联系.容易想到作BED的平分线,但因BEED,故不能直接证出BD2CD.若延长AD交ABC的外接圆于F,则可得EBEF,从而获取.证明:如图1,延长AD与ABC的外接圆相交于点F,连结CF与BF,则BFABCAABCAFC,即BFDCFD.故BF:CFBD:DC. 又BEFBAC,BFEBCA,从而FBEABCACBBFE.故EBEF. 作BEF的平分线交BF于G,则BGGF. 因GEFBEFCEF,GFECFE,故FEGFEC.从而GFFC. 于是,BF2CF.故BD2CD.1.2 利用

12、四点共圆例2 凸四边形ABCD中,ABC60,BADBCD90,AB2,CD1,对角线AC、BD交于点O,如图2.则sinAOB_.分析:由BADBCD90可知A、B、C、D四点共圆,欲求sinAOB,联想到托勒密定理,只须求出BC、AD即可.解:因BADBCD90,故A、B、C、D四点共圆.延长BA、CD交于P,则ADPABC60. 设ADx,有APx,DP2x.由割线定理得(2x)x2x(12x).解得ADx22,BCBP4. 由托勒密定理有BDCA(4)(22)211012. 又SABCDSABDSBCD. 故sinAOB.例3 已知:如图3,ABBCCAAD,AHCD于H,CPBC,C

13、P交AH于P.求证:ABC的面积SAPBD.分析:因SABCBC2ACBC,只须证ACBCAPBD,转化为证APCBCD.这由A、B、C、Q四点共圆易证(Q为BD与AH交点).证明:记BD与AH交于点Q,则由ACAD,AHCD得ACQADQ. 又ABAD,故ADQABQ. 从而,ABQACQ.可知A、B、C、Q四点共圆.APC90PCHBCD,CBQCAQ,APCBCD. ACBCAPBD. 于是,SACBCAPBD.2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决

14、.2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD中,ABCD,ADDCDBp,BCq.求对角线AC的长.分析:由“ADDCDBp”可知A、B、C在半径为p的D上.利用圆的性质即可找到AC与p、q的关系.解:延长CD交半径为p的D于E点,连结AE.显然A、B、C在D上.ABCD, BCAE. 从而,BCAEq. 在ACE中,CAE90,CE2p,AEq,故AC.2.2 联想直径的性质构造辅助圆例5 已知抛物线yx22x8与x轴交于B、C两点,点D平分BC.若在x轴上侧的A点为抛物线上的动点,且BAC为锐角,则AD的取值围是_.分析:由“BAC为锐角”可知点A在以定线段BC为直径的圆外

15、,又点A在x轴上侧,从而可确定动点A的围,进而确定AD的取值围.解:如图5,所给抛物线的顶点为A0(1,9),对称轴为x1,与x轴交于两点B(2,0)、C(4,0). 分别以BC、DA为直径作D、E,则两圆与抛物线均交于两点P(12,1)、Q(12,1). 可知,点A在不含端点的抛物线PA0Q时,BAC90.且有3DPDQADDA09,即AD的取值围是3AD9.2.3 联想圆幂定理构造辅助圆例6AD是RtABC斜边BC上的高,B的平行线交AD于M,交AC于N.求证:AB2AN2BMBN.分析:因AB2AN2(ABAN)(ABAN)BMBN,而由题设易知AMAN,联想割线定理,构造辅助圆即可证得

16、结论.证明:如图6,234590,又34,15,12.从而,AMAN. 以AM长为半径作A,交AB于F,交BA的延长线于E.则AEAFAN. 由割线定理有BMBNBFBE (ABAE)(ABAF) (ABAN)(ABAN) AB2AN2, 即 AB2AN2BMBN.例7 如图7,ABCD是O的接四边形,延长AB和DC相交于E,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切O于P、Q.求证:EP2FQ2EF2.分析:因EP和FQ是O的切线,由结论联想到切割线定理,构造辅助圆使EP、FQ向EF转化.证明:如图7,作BCE的外接圆交EF于G,连结CG.因FDCABCCGE,故F、D

17、、C、G四点共圆.由切割线定理,有EF2(EGGF)EF EGEFGFEFECEDFCFBECEDFCFBEP2FQ2, 即 EP2FQ2EF2.2.4 联想托勒密定理构造辅助圆例8 如图8,ABC与ABC的三边分别为a、b、c与a、b、c,且BB,AA180.试证:aabbcc.分析:因BB,AA180,由结论联想到托勒密定理,构造圆接四边形加以证明.证明:作ABC的外接圆,过C作CDAB交圆于D,连结AD和BD,如图9所示.AA180AD,BCDBB,AD,BBCD.ABCDCB. 有,即 . 故DC,DB. 又ABDC,可知BDACb,BCADa. 从而,由托勒密定理,得 ADBCABD

18、CACBD,即 a2cb. 故aabbcc.练习题1. 作一个辅助圆证明:ABC中,若AD平分A,则.(提示:不妨设ABAC,作ADC的外接圆交AB于E,证ABCDBE,从而.)2. 已知凸五边形ABCDE中,BAE3a,BCCDDE,BCDCDE1802a.求证:BACCADDAE.(提示:由已知证明BCEBDE1803a,从而A、B、C、D、E共圆,得BACCADDAE.)3. 在ABC中ABBC,ABC20,在AB边上取一点M,使BMAC.求AMC的度数.(提示:以BC为边在ABC外作正KBC,连结KM,证B、M、C共圆,从而BCMBKM10,得AMC30.)4如图10,AC是ABCD较

19、长的对角线,过C作CFAF,CEAE.求证:ABAEADAFAC2.(提示:分别以BC和CD为直径作圆交AC于点G、H.则CGAH,由割线定理可证得结论.)5. 如图11.已知O1和O2相交于A、B,直线CD过A交O1和O2于C、D,且ACAD,EC、ED分别切两圆于C、D.求证:AC2ABAE.(提示:作BCD的外接圆O3,延长BA交O3于F,证E在O3上,得ACEADF,从而AEAF,由相交弦定理即得结论.)6已知E是ABC的外接圆之劣弧BC的中点.求证:ABACAE2BE2.(提示:以BE为半径作辅助圆E,交AE与其延长线于N、M,由ANCABM证ABACANAM.)7. 若正五边形ABCDE的边长为a,对角线长为b,试证:1.(提示:证b2a2ab,联想托勒密定理作出五边形的外接圆即可证得.)8 / 8

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号