《影响我国旅游收入地因素分析实施报告.doc》由会员分享,可在线阅读,更多相关《影响我国旅游收入地因素分析实施报告.doc(10页珍藏版)》请在三一办公上搜索。
1、影响我国旅游收入的因素分析【摘要】旅游业作为我国国民经济的重要产业之一,在我国经济发展中起到了重要的作用。为了促进旅游业更好的发展,需要研究影响旅游业发展的因素。本文基于1994-2014年的数据,运动Eviews软件,从影响国旅游收入的因素中选择国旅游总人数、城镇居民家庭可支配收入、公路里程数、铁路营业里程数以及星级酒店总数建立回归模型,利用逐步回归法消除模型的多重共线性并进行异差和自相关性的检验,最终建立科学合理的回归模型,做出相应的政策建议。一、 引言改革开放以来,我国的经济社会持续快速发展,人均可支配收入明显提高,居民的闲暇时间大量增多,在保证物质生活的质量的同时,人们开始重视精神生活
2、,外出旅游成为人们享受生活的主要式。尤其是20世纪90年代以来,我国国旅游收入增长率高达14.6%,远远高于GDP增长水平。如图1是1994-2013年我国国旅游收入的走势图。因此,为了规划中国未来旅游收入的发展,充分利用旅游业发展国民经济,使旅游业在国民经济发展中扮演越来越重要的角色。图1:1994-2013年国旅游收入(数据来源:中国统计年鉴2014)二、 国旅游因素的影响收入及数据选取影响旅游收入的因素有很多,例如季节不同往往旅游人数、旅游收入不同,距离远近也会影响旅游业的发展,往往人们偏好于便并且距离较近的旅游景点;再者,景点环境、景区类型也会影响旅游发展。综合现有研究文献和相关数据收
3、集,本文按照建模和数据收集的难易程度将当前影响中国旅游收入的因素分为以下几个面:一是游客总人数。国旅游人数是衡量一个或地区旅游业发展水平的重要指标之一,旅游人数是刺激旅游收入增长最直接的因素之一,只有具备了庞大的消费人群,经济收入才会不断增加。二是城镇居民人均可支配收入。查阅相关数据可知,旅游人数部分是城镇居民,因此本文不直接采用居民人均可支配收入指标而采用城镇居民人均可支配收入来研究其对旅游收入的影响。三是交通状况。通常交通状况好的地越能吸引游客,营业里程越远路费越高,给铁路局和收费站带来的收益也越高,也会给本地区带来更多的旅游收入。所以本文选用公里里程数和铁路里程数两个指标研究交通状况对旅
4、游收入的影响。四是星级酒店总数。人们出去旅行离不开住宿,旅游业越发达的地区酒店宾馆等住宿的场所也会相应的增多。因此我们可以研究星级酒店数对旅游收入的影响。由于中国统计年鉴上收录的影响国旅游收入的相关因素的数据最早记录是在1994年,最新能从统计年鉴上下载的数据是到2013年,因此本文的分析基于1994-2013年的数据。三、 模型的设立、估计与修正(一) 描述分析本文将国旅游收入作为被解释变量,国旅游人数、城镇居民可支配收入、公路里程数、铁路营业里程数作为解释变量。1. 国游客总人数【*1】与国旅游收入【Y】之间的相关性分析。由散点图可知,国游客总人数【*1】与国旅游收入【Y】之间存在正相关关
5、系。2. 城镇居民可支配收入【*2】与国旅游收入【Y】之间的相关性分析。由散点图可知,城镇居民可支配收入【*2】与国旅游收入【Y】之间存在较强的正相关关系。3. 公路里程数【*3】与国旅游收入【Y】之间的相关性分析。由散点图可知,公路里程在*一年份区间增加得特别快,但总体来说,公路里程【*3】与国旅游总收入【Y】之间存在正相关关系。4. 铁路营业里程数【*4】与国旅游收入【Y】之间的相关性分析。由散点图可知,铁路营业里程【*4】与旅游总收入【Y】之间存在正相关关系。5. 星级酒店总数【*5】与国旅游收入【Y】之间的相关性分析。由散点图可知,星级酒店总数【*5】与国旅游总收入【Y】存在一定的正相
6、关关系,但不是绝对的正相关。(二) 模型设定根据以上描述分析的结果,初步建立如下模型:Y=1+2*1+3 * 2+4 * 3+5 * 4+6*5+其中,旅游总收入为Y,国旅游人数为*1,城镇居民可支配收入为*2,公路里程数为*3,铁路营业里程数为*4,星级饭店总数为*5。表1:1994-2013年国旅游收入及其相关数据如下年份旅游总收入(亿元)国游客总人数(百万人)城镇居民家庭均可支配收入(元)公里里程(万公里)铁路营业里程数(万公里)星级饭店总数(个)Y*1*2*3*4*519941023.55243496.2111.785.9299519951375.76294283115.76.2437
7、2019961638.46404838.9118.586.49441819972112.76445160.3122.646.6520119982391.26955425.1127.856.64578219992831.97195854.176.74703520003175.57446280.986.871048120013522.47846859.6169.87.01735820023878.48787702.8176.527.19888020033442.38708472.2.987.3975120044710.711029421.6.077.441088820055285.91212104
8、93334.527.541182820066229.7139411759.5345.77.711275120077770.6161013785.8358.377.81358320088749.3171215780.8373.027.9714099200910183.7190217174.7386.088.5514237201012579.8210319109.4400.829.1213991201119305.4264121809.8410.649.3213513201222706.2295724564.7423.759.7612807201326276.1326226955435.6210.
9、3113293数据来源:中国统计年鉴(2014)根据表1的数据,利用Eviews软件进行参数估计,结果如下:VariableCoefficientStd. Errort-StatisticProb.C-12112.465645.548-2.1454880.0499*114.302742.5778335.5483570.0001*2-0.6643240.391312-1.6976860.1117*3-14.674925.472413-2.6816190.0179*41592.342994.81141.6006470.1318*5-0.0560240.130289-0.4299930.6737R-
10、squared0.994577Adjusted R-squared0.992640由此,初步预测模型为:Y = -12112.457 + 14.303*1 - 0.664*2 - 14.675*3 + 1592.342*4 - 0.*5四、 模型的修正与检验(一) 多重共线性检验由于R2 较大且接近于1, 而且F=513.477 F0.05 (5, 14)=2.96, 所以国旅游收入与上述解释变量间总体线性关系显著。但由于t0.025 (20 -5 -1)=2.145, 不仅*2、*4、*5 参数估计值未能通过t检验, 而且符号的经济意义也不合理, 这表明解释变量之间存在多重共线性。于是做了解
11、释变量之间的相关系数矩阵如下:表2:简单系数矩阵*1*2*3*4*5*11.00000 0.99515 0.91295 0.98150 0.76586 *20.99515 1.00000 0.93380 0.98969 0.81133 *30.91295 0.93380 1.00000 0.91388 0.90932 *40.98150 0.98969 0.91388 1.00000 0.82009 *50.76586 0.81133 0.90932 0.82009 1.00000 由矩阵结果可知,除了【*5】以外,各解释变量之间相关系数都很高,证实解释变量之间确实存在多重共线性问题。现利用逐
12、步回归法消除多重共线性问题。第一步:各解释变量与被解释变量分别做一元回归,结果如下:表3:一元回归*1Y = -4274.2709312 + 8.*1R2=0.970176 F=619.0666 *2Y = -3943.78531939 + 0.8*2R2= 0.941549 F= 289.9509*3Y = -5021.76139433 + 49.1136660416*3R2= 0.706060 F=43.23705*4Y = -36851.616325 + 5811.29000984*4R2=0.926067 F=225.4633*5Y = -5191.256918 + 1.*5R2=0.
13、457233 F=15.16343由上述回归发现【Y】与【*1】的回归具有最大的可决系数,可见,旅游收入受旅游人数的影响最大,与经验相符,因此选择【Y】与【*1】的回归模型为初始回归模型。将其他解释变量分别导入初始回归模型,寻找最佳回归程。表4:逐步回归C*1*2*3*4*5R2Y=f(*1)-4274.271 8.685 0.970 t(-7.765)(-24.881)Y=f(*1,*2)-4377.141 18.333 -1.128 0.981 t(-10.08)-6.566 (-3.475)Y=f(*1,*2,*3)-3035.899 13.62340 -0.279423-18.5285
14、4 0.994 t(-7.849)(6.722)(-1.039)(-5.012)Y=f(*1,*2,*4)-20507.52 19.775 -1.7702824.407 0.972 t(-2.977) (7.731) (-4.445)(2.345)Y=f(*1,*2,*4,*5)-19643.49 13.852 -0.9742952.316-0.301 0.992 t(-3.375)(4.530) (-2.191)(2.902)(-2.734)在【*1】的基础上纳入【*2】后,变量【*2】城镇居民人均可支配收入这一变量之前的系数是-1.128,说明人均城镇居民的收入与旅游收入是负相关的,这与我
15、们所作的假设是相悖的。这一系数同时也说明了人均城镇居民收入的边际旅游倾向是递减的。这种现象的原因我们认为是:首先,旅游是属于较高层次的消费支出,居民在拥有了足够的可自由支配的收入和闲暇时间后,才会有出去旅游的愿望和行为。现代城市生活节奏加快,城市居民很少有闲暇时间去旅游。其次,我国宏观改革中,诸如住房、教育、医疗保险、社会保障等制度的改革,导致城市居民未来预期支出上升;市场化改革的加速,职工下岗,导致城市居民未来预期收益下降;因此很多居民更偏好于将多余的收入转化为储蓄而不去消费。因此城镇居民的边际旅游倾向为负。因此在【*1】、【*2】的基础上继续纳入【*3】,显然*3的回归结果不符合描述分析中
16、所述的那样,所以直接剔除【*3】,继续纳入【*4】,纳入【*4】后的程通过检验且符合经济意义,因此在【*1】、【*2】、【*4】的基础上纳入【*5】,【*5】的系数为负,考虑其原因可能是和城镇居民人均可支配收入的系数为负的原因相似,本来按常理来说,如果星级酒店总数越多,反映了当地的旅游业发展得越好,旅游人数也会越多,但是另一面星级酒店数越多也意味着消费越多,进一步考虑到当下的宏观经济走势,由于多不确定因素,使人们预期收入会减少,因此人们可能会更偏好于消费较低的旅游地区。所以星级酒店总数前的系数为负。综上,在显著性水平为5%的条件下,最终回归模型为:Y = -19643.493 + 13.852
17、*1 - 0.974*2 + 2952.316*4 - 0.301*5(-3.374) (4.531) (-2.191) (2.902301)(-2.734)R2=0.991791 F=453.0548(二) 异差检验根据上述回归模型,进行异差检验。建立模型检验程:e2=C+a1*1+a2*2+a3*4+a4*5+a5*12+a6*22+a7*42+a8*52要检验的同差性假设为H0:a1=a2=a3=a4=a5=a6=a7=a8=0检验结果如下:White Heteroskedasticity Test:F-statistic3.719836Probability0.023754Obs*R-
18、squared14.60238Probability0.067354由上表可知:Obs*R-squared=14.60238 卡在0.05的显著水平下,查表得临界值,临界值c20.05(8)=15.5114.60238,因此接受原假设,程具不存在异差性。(三) 自相关性检验运用拉格朗日乘数法(LM)检验程是否具有自相关性,检验结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic1.771242Probability0.204498Obs*R-squared2.246167Probability0.133946由以上结果可知:Ob
19、s*R-squared的计算结果是2.246167,卡在0.05的显著水平下,查表得临界值,临界值 c20.05(1)=3.842.246167,所以接受原假设,即该模型不存在自相关。五、 结论与建议通过建立多元线性回归模型可以得出,影响国旅游总收入的主要因素是国游客总人数、城镇居民人均可支配收入、铁路营业里程数和星级饭店总数。在其他因素不变的情况下,旅游人数每增加1百万人,旅游总收入增加13.852亿元;城镇居民收入每增加1元,旅游收入减少0.974亿元;铁路营业里程每增加1万公里,旅游总收入增加2952.31亿元;星级酒店每增加1个,旅游收入减少0.301亿元。虽然城镇居民可支配收入和星级
20、酒店总数对旅游总收入的影响表面看上去像悖论,但在当前的宏观经济形势下,也是符合实际的,具体原因分析已经在前文中进行阐述。由回归模型可知,铁路营业里程数对旅游收入的影响最大,因为铁路交通便且经济实惠,因此更受人们的青睐,所以相关部门在进行旅游业规划时,应更加注重交通条件。其次要加快完善旅游产业体系,吸引更多的国旅游人群。因此旅游人数对旅游总收入的影响也很大,所以,有关部门应该因地制宜,合理开发利用当地的旅游资源、完善旅游产品体系、加强旅游安全与质量保障体系以吸引更多的游客,促进当地经济的发展。最后,旅游景区在开设星级酒店的同时,应该注意加大旅馆、青旅等消费较低并且适用于普通旅客消费需求的住宿设施,比如,相关部门可以在当地游客中做一定的调查,了解大部分旅客的住宿需求,根据调查结果相应的开设一定比例的星级酒店和消费档次相对较低的旅馆等。六、 参考文献:1. 袁翊茗.邵欣欣. 我国国旅游收入影响因素的计量分析j. 大学共青学院.20122. 仕河;建国.对国旅游收入影响因素的实证分析J.农业学报,2009.3. 红霞;锴; 梁磊. 我国国旅游收入影响因素的实证分析J. 工业大学经贸管理学院. 2010.4. 袁斯玮. 旅游收入影响因素分析与预测法比较D. 财经大学.2014.