Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt

上传人:小飞机 文档编号:1286492 上传时间:2022-11-04 格式:PPT 页数:19 大小:595.15KB
返回 下载 相关 举报
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第1页
第1页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第2页
第2页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第3页
第3页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第4页
第4页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt》由会员分享,可在线阅读,更多相关《Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt(19页珍藏版)》请在三一办公上搜索。

1、Modelling of an Inductively Coupled Plasma Torch: first stepAndr P.1, Clain S. 4, Dudeck M. 3, Izrar B.2, Rochette D1, Touzani R3, Vacher D.1,1. LAEPT, Clermont University, France2. ICARE, Orlans University, France3. Institut Jean Le Rond dAlembert, University of Paris 6 , France4. LM, Clermont Univ

2、ersity, , France,Modelling of an Inductively Co,Composition in molar fraction,Mars,97% CO2; 3% N2,Titan,97%N2; 2% CH4; 1% Ar,Composition in molar fraction,ICP Torch:atmospheric pressureLow flow of gazAssumptionsThermal equlibrium Chemical equilibriumOptical Thin plasma,Simple Case!,ICP Torch:Simple

3、Case!,Composition,Spectral lines, Spectroscopy measurements,Transport Coefficients,Modelling,ThermodynamicProperties,Radiative loss term,Interaction Potentials,CompositionSpectral lines, Tra,Composition,Spectral lines, Spectroscopy measurements,Transport Coefficients,Modelling,ThermodynamicPropertie

4、s,Radiative loss term,Interaction Potentials,CompositionSpectral lines, Tra,Chemical and Thermal equilibrium: Gibbs Free Energy minimisationDalton LawElectrical NeutralityChemical species: MarsMonatomic species (11): C, C-, C+, C+, N, N+, N+, O, O-, O+, O+Diatomic species (18): C2, C2-, C2+, CN, CN-

5、, CN+, CO, CO-, CO+, N2, N2-, N2+, NO, NO-, NO+, O2, O2-, O2+Poly_atomic species (23):C2N, C2N2, C2O, C3, C3O2, C4, C4N2, C5, CNN, CNO, CO2, CO2-, N2O, N2O3, N2O4, N2O5, N2O+, N3, NCN, NO2, NO2-, NO3, O3 e-, solid phase: graphiteTitan:Monatomic species (13): Ar, Ar+, Ar+, C, C-, C+, C+, H, H+, H-, N

6、, N+, N+, Diatomic Species (18) : C2, C2-, C2+, CN, CN-, CN+, CO, CO-, CO+, N2, N2-, N2+, NO, NO-, NO+, O2, O2-, O2+ Poly_atomic species (26 ): C2H, C2H2, C2H4, C2N, C2N2, C3, C4, C4N2, C5, CH2, CH3, CH4, CHN, CNN, H2N, H2N2, H3N, H4N2, N3, NCN, H3+, NH4+, C2H3, C2H5, C2H6, HCCNe-, solid phase: grap

7、hite,Chemical and Thermal equilibri,To calculate in gas phase, we consider the temperature range 3000; 15000,Mars,Titan,To calculate in gas phase, we,Mars,Titan,MarsTitan,Composition,Spectral lines, Spectroscopy measurements,Transport Coefficients,Modelling,ThermodynamicProperties,Radiative loss ter

8、m,Interaction Potentials,CompositionSpectral lines, Tra,*Intensities calculation (Boltzmann distribution),Mars,Line CI 2582.9 10-10 m,MarsLine CI 2582.9 10-10 m,Composition,Spectral lines, Spectroscopy measurements,Transport Coefficients,Modelling,ThermodynamicProperties,Radiative loss term,Interact

9、ion Potentials,CompositionSpectral lines, Tra,Thermodynamic properties,Massic density: Internal energy: e,Thermodynamic properties Ma,Composition,Spectral lines, Spectroscopy measurements,Transport Coefficients,Modelling,ThermodynamicProperties,Radiative loss term,Interaction Potentials,CompositionS

10、pectral lines, Tra,Potential interactionsCharged-Charged: Shielded with Debye length Coulombian potential Neutral-Neutral:Lennard Jones Potential (evalaute and combining rules)Charged-Neutral:Dipole and charge transferElectrons-neutral: Bibliography and estimations,Potential interactions,Transport c

11、oefficients : Chapman-Enskog methodElectrical conductivity : third orderViscosity coefficient : fourth orderTotal thermal conductivity k :summation of four termstranslational thermal conductivity due to the electrons,translational thermal conductivity due to the heavy species particles,internal ther

12、mal conductivity,chemical reaction thermal conductivity.,Transport coefficients : Chapm,Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件,Axisymmetry LTE model for inductive plasma torches,LTE flow field equations,U: conservative variable vector Fr(U), Fz(U): convective f

13、luxes Gr(U), Gz(U): diffusive fluxes S(U): source term,Viscous terms,Conductive heat fluxes,Lorentz force,Joule heating,Radiative loss term PRad,Physical model: assumptions- Classical torch geometry axisymmetric geometry- Local Thermodynamic Equilibrium (LTE) conditions for the plasma- Unsteady stat

14、e, laminar, swirling plasma flow (tangential component)- Optically thin plasma- Negligible viscous work and displacement current,Axisymmetry LTE model for indu,MHD induction equations,B: magnetic induction H: magnetic field E: electric field J and J0: current density and source current density : mag

15、netic permeability : electric conductivity,Equations formulated in terms of electric field E,Numerical method,Hydrodynamics (three steps)To obtain an approximation of the solution U on each cell, we use a fractional step technique coupling the finite volume method and the finite element method: Firs

16、t step: To compute the convective fluxes , we use a finite volume scheme with multislope MUSCL reconstruction where the fluxes are calculated using a HLLC scheme. Second step: We use a Runge Kutta method to integrate the source terms. Third step: We use a finite element method to evaluate the diffus

17、ive contribution.ElectromagneticTo solve the partial differential equation, we use a standard finite element method with a standard triangulation of the domain and the use of a piecewise linear approximation.,Using the cylindrical coordinates (r,z) and assuming -invariance we obtain:,MHD induction e

18、quations B: mag,Basic datacompositionIntensity calculationThermodynamic propertiesFirst estimation of interaction potentialsFirst estimation of transport coefficients FutureUpgrade the interaction potentialsEstimate the accuracy need to calculate the transport coefficientsRadiative lossUnderstand the energy transfer from the inductive coilsModify the ICP torch,Basic data,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号