《生理学课件呼吸.ppt》由会员分享,可在线阅读,更多相关《生理学课件呼吸.ppt(94页珍藏版)》请在三一办公上搜索。
1、第五章 呼 吸,第一节 肺 通 气,第三节 气 体 运 输,第四节 呼吸运动的调节,第二节 气 体 交 换,概 述,概 述呼吸:机体与外界环境之间的气体交换过程。呼吸全过程:,第一节肺 通 气,一、肺通气概念二、肺通气结构,血管网 粘液腺 加湿、加温、过滤、清洁 纤 毛 迷走NACh+M受体收缩气道阻力 平滑肌 (故哮喘病人夜间发作较多) 交感NNE+2受体舒张气道阻力 (拟交感药物治疗哮喘) 注:体液因素(组织胺、5-HT、缓激肽等)强烈收缩 呼吸肌:与肺通气的动力有关 胸膜腔:其负压与肺扩张有关,呼吸道,三、肺通气原理(一)肺通气的动力,呼 气,肺内压大气压,缩 小,肺 脏,吸 气,肺内压
2、大气压,胸 廓,呼 吸 肌,缩 小,收 缩,舒 张,扩 张,原动力:呼吸运动是肺通气的原动力。 直接动力:肺内压与外界大气压间的压力差。,扩 张,1.呼吸运动 (1)型式: 按呼吸深度分:平静呼吸和用力呼吸; 按动作部位分:胸式呼吸、腹式呼吸和混合式呼吸。 混合呼吸:正常成人。 腹式呼吸:婴儿、胸膜炎、胸腔积液。 胸式呼吸:严重腹水、腹腔有巨大肿块、(2)频率: 成人:1218次/分 婴儿:6070次/分,妊娠、肥胖。,(3)过程: 平静呼吸:,肺内压大气压,气体经呼吸道出肺,胸廓容积缩小,肺被动缩小,膈肌和肋间外肌舒张,肋骨和膈肌弹性回位,缩小胸廓上下、前后、左右径,肺内压大气压,气体经呼吸
3、道入肺,胸廓容积扩大,肺在胸膜腔负压作用下被动扩张(因肺无主动扩缩的组织结构),膈肌收缩使膈顶下移,增大胸廓的上下径肋间外肌收缩使肋骨上提,扩大胸廓前后、左右径,吸 气,呼 气,用力呼吸: 用力吸气时,辅助吸气肌也参加,胸廓容积进一步扩大。 用力呼气时,除吸气肌舒张外,呼气肌也参加(肋间内肌+腹壁肌收缩),胸廓容积进一步缩小。 人工呼吸: 基本原理:使肺内与外界大气压间产生压力差 方法:负压吸气式(压胸法) 正压吸气式( 口对口呼吸法,呼吸机)(4)特点: 平静呼吸时,吸气是主动的,呼气是被动的。 用力呼吸时,吸气和呼气都是主动的。 平静呼吸时,肋间外肌所起的作用膈肌。,2.肺内压: 肺内压是
4、指肺内气道和肺泡内气体的压力。平静吸气初:肺内压 大气压=0.30.4kPa气出肺平静呼气末:肺内压 = 大气压气流停用力呼吸时:肺内压的升降变化有所增加。 如:故意闭住声门而作剧烈呼吸运动。,3.胸内压(1)概念: 胸内压是指胸膜腔内的压力。(2)测定方法: 间接法:气囊测定食管内压以间接反映胸内压 直接法:,(3)压力: 平静吸气时:胸内压 大气压=0.71.3kPa 呼气时:胸内压 大气压=0.40.7kPa,特点: 平静呼吸时胸内压始终为负压; 用力呼吸时负压变动更大; 有时可为正压(如紧闭声门用力呼吸)。,(4)成因: 前提条件:有少量浆液的密闭腔;肺和胸廓是弹性组织;胸廓自然容积肺
5、容积;壁层胸膜紧贴于胸廓内壁, 大气压对其影响极小。 形成因素:,两种方向相反作用力的代数和胸内压大气压肺回缩力胸内压0肺回缩力,迫使脏层胸膜回位,迫使脏层胸膜外移使肺扩张,(肺弹性组织回缩力和肺泡表面张力),肺 回 缩 力,(大 气 压),肺 内 压,(5)生理意义: 纽带作用; 维持肺处于扩张状态; 促进血液和淋巴液的回流。,结论: 胸膜腔内负压是脏层胸膜受到两个相反作用力相互抵消的代数和,经脏层胸膜间接反映在胸膜腔的压力。,(二)肺通气的阻力 呼吸运动产生的动力,在克服肺通气所遇到的阻力后,方能实现肺通气。阻力增高是临床肺通气障碍的常见原因。,弹性阻力,非弹性阻力,肺通气阻力,胸廓弹性阻
6、力:与胸廓所处的位置有关,肺弹性阻力,气道阻力:与气体流动形式+气道半径有关,粘滞阻力,惯性阻力,肺弹性回缩力: 1/3,肺泡表面张力:2/3,常态下可忽略不计,1.弹性阻力: (1)肺的弹性阻力 度量法:=顺应性 =(1/弹性阻力) 顺应性:指在外力作用下弹性组织的可扩张性。 顺应性大= 易扩张 =弹性阻力小 顺应性小=不易扩张=弹性阻力大,肺容积变化(V) 肺顺应性(CL)= = 0.2L/cmH2O 跨肺压变化(P) 肺内压与胸膜腔内压之差,测得的肺顺应性(L/cmH2O) 比顺应性= 肺总量(L),因肺顺应性还受肺总量的影响,所以应测单位肺容量下的顺应性,即比顺应性。,来源: 肺的弹性
7、阻力,.肺泡表面张力 离体肺在充气和充水时(扩张肺至相同容积),可见充气所需的压力充水。 说明肺泡内液-气界面(表面张力)是否存在,与肺的弹性阻力有着密切关系。,肺泡内的液-气界面,因界面层的液体分子受力不均匀,表现的内聚力(表面张力)方向是向中心的使肺泡缩小。,肺弹性组织回缩力:1/3,肺泡表面张力:2/3,根据Laplace定律: P(N/cm) 肺泡内压力(P):与表面张力(T)成正比, 与肺泡半径(r)成反比。,肺泡表面张力的作用: a.肺泡回缩肺通气(吸气)阻力 b.肺泡内压不稳定肺泡破裂或萎缩 c.促肺泡内液生成产生肺水肿,2T(N/cm),r(cm),.表面活性物质: 来源:肺泡
8、型细胞分泌,单分子层分布于肺泡液-气界面上,其密度随肺泡的张缩而改变。 成分:二棕榈酰卵磷脂( DPL或DPPC )。 作用: a.降低肺泡表面张力降低吸气阻力; b.减少肺泡内液的生成防肺水肿的发生;,c.维持肺泡内压的稳定性防肺泡破裂或萎缩;,临床: 成人肺炎、肺血栓等表面活性物质肺不张。 67个月胎儿才开始分泌表面活性物质,故早产儿可因缺乏表面活性物质而发生肺不张和新生儿肺透明膜病呼吸窘迫综合征。,吸 气,肺泡表面积,DPL分散,降表面张力的作用,肺泡表面张力,肺泡回缩,防肺泡破裂,(呼气),(),(密集),(),(),(扩张),(萎陷),(2)胸廓的弹性阻力 胸廓的弹性阻力则是由胸廓的
9、弹性组织所形成。胸廓的弹性阻力的作用方向,则视胸廓扩大的程度而异: 胸廓处于自然位置时(肺容量67),不表现有弹性回缩力; 胸廓缩小时(肺容量67),胸廓的弹性回缩力向外=吸气的动力,呼气的阻力; 胸廓扩大时(肺容量67),胸廓的弹性回缩力向内=吸气的阻力,呼气的动力。,肺容量变化(P) 胸廓顺应性 = 0.2L/cmH2O 跨壁压(P),(3)影响弹性阻力的因素: 肺充血、肺不张、表面活性物质减少、肺纤维化和感染等原因肺弹性阻力(肺顺应性)吸气困难。 肺气肿时肺弹性成分破坏肺回缩力肺弹性阻力(肺顺应性)呼气困难。 故肺顺应性加大并不一定表示肺通气功能好。 肥胖、胸廓畸形、胸膜增厚、腹内占位病
10、变等原因弹性阻力(顺应性)但引起通气障碍的情况较少。,2.非弹性阻力气道阻力 气道阻力特点: 只在呼吸运动时产生; 流速快阻力大 与气体流动形式有关: 层流阻力小 湍流阻力大 与气道半径的4次方成反比: (R1r4),影响气道阻力的因素: 跨壁压:呼吸道内压力高跨壁压大管径被动扩大阻力。 肺实质对气道壁的外向放射状牵引作用:小气道的弹性组织对无软骨支持的细支气管保持通畅。 气道管壁平滑肌舒缩活动: 迷走NAch + M受体收缩气道阻力 交感NNE +2受体舒张气道阻力 非NE非Ach共存递质的调制(如神经肽) 高气压:如深潜水环境下,由于气体密度增大,气道阻力增大,呼吸减慢加深,增加了呼吸肌作
11、功和能量消耗。,化学因素的影响: 儿茶酚胺气道平滑肌舒张。 PGF2气道平滑肌收缩;PGE2气道平滑肌舒张。 过敏反应时肥大细胞释放的组胺气道平滑肌收缩。 吸入气CO2反射性支气管收缩。 哮喘病人的气道上皮合成、释放肺内皮素气道平滑肌收缩。,四、肺容量和肺通气量 (一)肺容量,机能余气量余气量补呼气量肺总容量肺活量余气量 肺活量补吸气量潮气量补呼气量 时间肺活量=用力吸气后再用力并快速呼出的气体量占肺活量的百分数。 正常值:t1末=83,t2末=96,t3末=99 。 意义:反映肺活量容量的大小、呼吸所遇阻力的变化,是评价肺通气功能较好指标,阻塞性肺疾患的时间肺活量。,(二) 肺通气量:每分通
12、气量潮气量呼吸频率(次/分) 最大通气量=最大限度潮气量最快呼吸频率(次/分) 通气贮存量百分比= 2.肺泡通气量(潮气量-无效腔量)呼吸频率 解剖无效腔:无气体交换能力的腔(从上呼吸道呼吸性细支气管)。 肺泡无效腔:因无血流通过而不能进行气体交换的肺泡腔。 生理无效腔解剖无效腔肺泡无效腔,最大通气量,最大通气量-每分通气量,100%,93%(反映通气贮备能力),= 68 L/min,= 70120 L/min,= 4.26.3 L/min,复习思考题 1.胸膜腔内负压是如何形成的?有什么生理意义? 2.什么叫肺泡表面张力?肺泡表面活性物质有什么生理意义? 3.为什么用生理盐水扩张肺阻力较小?
13、 4.无效腔对肺泡通气量有何影响? 5.为什么说时间肺活量更能反映肺通气功能?,第二节气体交换一、气体交换的原理 原理:扩散。 动力:膜两侧的气体分压差。 条件:气体的理化特性、膜通透性和面积、分压差。 速率:= 扩散速率(D) 扩散速率与分压差、温度、气体溶解度、扩散面积呈正比;与扩散距离、分子量的平方根呈反比。 气体的溶解度/分子量的平方根之比为扩散系数。扩散系数大,扩散速率快。,扩散距离分子量,分压差温度气体溶解度扩散面积,=,二、肺换气与组织换气,换气动力:分压差换气方向: 分压高分压低换气结果: 肺血 组织血 血 血,CO2,O2,肺换气过程,组织换气过程,三、影响气体交换的因素 (
14、一)气体扩散速率,O2、CO2扩散速率(D)的比较 分子量 血浆溶解度 肺泡气 A血 V血 D O2 32 21.4 13.9 13.3 5.3 1CO2 44 515.0 5.3 5.3 6.1 2,CO2的扩散系数是O2的20倍,在同等条件下,CO2的扩散速率是O2的20倍;但在肺中,由于肺泡气和V血间分压差的不同,CO2的扩散速率实际约为O2的2倍。 肺功能衰竭患者往往缺O2显著,CO2潴留不明显。,分压差温度气体溶解度扩散面积,扩散距离分子量,=,(ml/L) (KPa) (KPa) (KPa),1.厚度:肺纤维化、尘肺、肺水肿呼吸膜厚度通透性气体交换;特别在运动时,耗氧量肺血流速(=
15、气体交换时间),呼吸膜厚度气体交换 。 2.面积:肺气肿、肺不张、肺叶切除呼吸膜面积气体交换。,6层1m厚,(二)呼吸膜 正常呼吸膜非常薄,通透性与面积极大(70-80m2)。血液流经肺毛细血管全长约需0.7s,而完成气体交换的时间仅需0.3s(前1/3段)=气体交换的时间储备;安静状态时仅有40m2参与气体交换=气体交换的面积储备。,CO2,O2,(三)通气/血流比值 每分肺通气量(VA)/每分肺血流量(Q) 1.VA/Q肺通气或肺血流增大生理无效腔换气效率(如心衰、肺动脉栓塞) 2.VA/Q肺通气增大功能性A-V短路换气效率(如支哮、肺气肿、支气管栓塞),(5L/min 0.84),(4.
16、2L/min),几点说明: VA/Qor换气效率缺O2和CO2潴留的症状;但以缺O2为主,原因: A-V血间PO2PCO2 功能性A-V短路时,A血PO2的程度V血PCO2; CO2 的扩散系数是O2的20倍,CO2的扩散速O2,不易出现CO2潴留的症状; A血PO2和PCO2时,可刺激呼吸,增加肺泡通气量,有助于CO2的排出,而几乎无助于O2的摄取(O2和CO2解离曲线的特点所决定的)。,整个肺脏的VA/Q=0.84,是衡量肺换气功能的指标;但因肺脏各局部的肺泡通气量和血流量的不均性,故临床上更应测肺脏各局部的VA/Q:,人体直立时肺局部的VA/Q 肺上区 肺下区VA(L/min)0.24
17、0.82 Q(L/min)0.07 1.29VA/Q 3.4 0.64,(四)肺扩散容量(DL) 概 念:指气体在单位分压差作用下每分钟通过呼吸膜扩散的体积。 意 义:肺扩散容量是测定呼吸气通过呼吸膜的能力的一种指标。 正常值:O2的DL=21mLmin-1mmHg-1 剧烈运动时O2的DL可增加到60mLmin-1mmHg-1。因为:肺血流量原关闭状态的肺泡毛细血管开放换气面积换气量; 肺通气量肺泡的通气-血流变得更加匹配换气效率。,CO2的DL=400450mLmin-1mmHg-1每分耗氧量为21mLmin-1mmHg-111mmHg=230mLmin-1,复习思考题 1.影响肺气体扩散
18、的因素有哪些? 2.通气/血流比值偏离正常范围对肺气体交换有何不良影响? 3.为什么CO2扩散速度高于O2? 4.呼吸膜由哪些结构组成? 5.比较空气、吸入气、肺泡气、呼出气的CO2、O2分压有何不同,解释其原因。,第三节气 体 运 输一、运输形式:(一)物理溶解:气体直接溶解于血浆中。 特征:量小,起桥梁作用; 溶解量与分压呈正比: (二)化学结合:气体与某些物质进行化学结合。 特征:量大,主要运输形式。 物理溶解,化学结合,动态平衡,1atm:O2物理溶解量=0.3ml3atm:O2物理溶解量=6.3ml(即20倍,是高压氧治疗的理论基础),在肺脏氧与二氧化碳运输形式,在组织氧与二氧化碳运
19、输形式,二、氧的运输(一)物理溶解:(1.5%)(二)化学结合:(98.5%) O2与Hb的可逆性结合:Hb + O2,当表浅毛细血管床血液中去氧Hb达5g/100ml以上,呈蓝紫色称紫绀(一般是缺O2的标志)。,临床常见缺氧及紫绀,PO2(氧合),PO2(氧离),HbO2,鲜红色,暗红色,1分子Hb可与4分子O2可逆结合(4个亚基各结合1个O2) Hb+O2结合的最大量氧容量 100ml血 Hb+O2结合的实际量氧含量 氧含量氧容量的%氧饱和度,2. O2与Hb结合的特征: 反应快、可逆、受PO2的影响、不需酶的催化; 是氧合,非氧化:Hb-Fe2+ + O2 Fe2+-HbO2 (因O2结
20、合在Hb的Fe2+上时,无电荷的转移),PO2 (氧合),PO2 (氧离), Hb+O2的结合或解离曲线呈S形,机制:与Hb 的变构有关: 氧合Hb 为疏松型(R型) 去氧Hb 为紧密型(T型) 当O2与Hb的Fe2+结合后Hb4个亚基间的盐键逐步断裂Hb分子由T型R型(即对O2 的亲和力逐步)R型的亲O2力为T型的数百倍,即:,当Hb某亚基与O2结合或解离后Hb变构其他亚基的亲O2力orHb4个亚基的协同效应便呈现S形的氧离曲线特征。,(三)氧离曲线特征 及生理意义1.上段:PO28.013.3kPa (80100mmHg) 坡度较平坦。 表明:PO2变化大时,,血氧饱和度变化小。 意义:保
21、证低氧分压时的高载氧能力。,高原(2.0KM的低气压),PO2明显而Hb结合O2量变化不大; 轻度呼衰病人肺泡气PO2明显而Hb结合O2量变化不大。,如:,2.中段:PO28.05.3kPa (4080mmHg) 坡度较陡。,上,中,下,表明:PO2降低能促进大量氧离,血氧饱和度下降显著。 意义:维持正常时组织的氧供。 因正常时组织的氧供,PO2在中段范围变化。,表明:PO2稍有下降,血氧饱和度就急剧下降。 意义:维持活动时组织的氧供。 因下段释放O2量为正常时的3倍(= O2储备段)。,上,中,下,3.下段:PO25.32.0kPa (1540mmHg) 坡度更陡。,小结: 氧离曲线特点及其
22、生理意义,P50:指Po2 为26.5mmHg时Hb氧饱和度达到50%。P50表示氧离曲线的正常位置。 P50: 表明 Hb 对o2的,亲和力(氧离易),需更高的Po2才能使Hb氧饱和度达到50%。 即曲线右移(下移):Pco2 PH2,3-DpG T P50: 表明 Hb 对o2的亲和力(氧离难),较低的Po2便能使Hb氧饱和度达到50%。 即曲线左移(上移): Pco2 PH 2,3-DpG,(四)影响氧离曲线的因素,T Pco,1. Pco2 PHPco2PH氧离曲线右移Pco2PH氧离曲线左移 CO2+ H2OHCO3-+H+H+当H+与Hb的某些A-的残基基团结合,促进Hb盐键形成H
23、b构型变氧离曲线位移。如:,(1)组织:H+促进Hb盐键形成Hb构型变为T型 Hb与o2亲和力氧离曲线右移氧离易。,这种酸度对Hb与o2亲和力的影响,称为波尔效应(Bohr effect),其意义:在肺脏促进氧合在组织促进氧离。,(2)肺脏:H+ 促进Hb盐键断裂Hb构型变为R型 Hb与o2亲和力氧离曲线左移氧合易。,2.温度 T氧离曲线右移 T氧离曲线左移 T变化H+的活度变化Hb与o2亲和力变化Hb构型改变氧离曲线位移。如:,(1) TH+的活度 Hb与o2亲和力Hb释放o2 Hb构型变为R型氧离曲线右移氧离易 如:组织代谢局部 T+CO2H+曲线右移氧离易,(2)TH+的活度Hb与o2亲
24、和力Hb结合o2 Hb构型变为T型氧离曲线左移氧离难 如:低温麻醉时,应防组织缺o2 冬天,末梢循环+氧离难局部红、易冻伤,3. 2,3-DpG DpG 氧离曲线右移 DpG 氧离曲线左移 DpG 能与Hb结合形成盐键Hb构型变为T型; DpG H+波尔效应。,(1)高原缺氧 RBC无氧代谢 DpG氧离曲线右移氧离易。注:这一效应是机体对低o2适应的重要机制; 但此时肺泡Po2,RBC无氧代谢产生过多的DpG, 也防碍了在肺部的氧合,故是否对机体有利尚无定论。,(2)大量输入冷冻血DpG氧离曲线左移氧离难。 (冷冻血3周后,RBC无氧代谢停止DpG) 故:应注意缺氧。,Pco曲线左移氧离难 c
25、o与Hb亲和力 o2与Hb亲和力 250 倍; co与Hb的结合位点与o2相同; co与Hb的某亚基结合后,将增加其余三个亚基对o2的亲和力。,Hb的Fe2+ Fe3+ : Hb失去结合o2的能力(如亚硝酸盐) 异常Hb:Hb的运o2能力(如地中海贫血) 胎儿Hb:胎儿Hb的4条肽链为22(成人为22)构成,其Hb与o2亲和力成人,这与胎儿所处的低氧环境是相适应的。,5. Hb本身的性质,4. Pco,三、CO2的运输(一)物理溶解: 5(二)化学结合:95 HCO3-的形式:88 (1)反应过程: CO2H2O (2)反应特征:,碳酸酐酶,H2CO3,HCO3-H+,反应速极快且可逆,反应方
26、向取决PCO2差; RBC膜上有Cl-和HCO3-特异转运载体, Cl-转移维持电平衡,促进CO2化学结合的运输;需酶催化:碳酸酐酶加速反应0.5万倍,双向作用;在RBC内反应, 在血浆内运输。,CO2的运输,碳酸酐酶,氨基甲酸血红蛋白的形式:7 (1)反应过程: HbNH2O2+H+CO2 (2)反应特征:,在组织,在肺脏,HHbNHCOOHO2,反应迅速且可逆,无需酶催化; CO2与Hb的结合较为松散; 反应方向主要受氧合作用的调节: HbO2的酸性高,难与CO2结合,反应向左进行 HHb的酸性低,易与CO2结合,反应向右进行 虽不是主要运输形式,却是高效率运输形式, 因肺部排出的CO2有
27、20是此释放的。 带满O2的Hb仍可带CO2。,(三)CO2解离曲线 CO2解离曲线是表示血液中CO2含量与PCO2间关系的曲线。 从图中可见:血液中CO2含量随PCO2的而,几乎成线性,关系(非S形曲线),且无饱和点。V血A点CO2的含量为52ml/100ml,而A血B点CO2的含量降为48ml/100ml,说明血液流经肺脏时,每100ml血液释放出4mlCO2 。当血PO2时, CO2解离曲线下移。,为什么血PO2, CO2解离曲线会下移? 这是由于O2与Hb的结合促使了CO2的释放,这一效应称何尔登效应(Haldane effect);其机制:Hb与O2结合后酸性增强,与CO2的亲和力下
28、降,使结合于Hb的O2释放出来; 酸性的HbO2释放出H+,H+与HCO3-结合成H2CO3,进一步解离成CO2和H2O。为什么V血CO2的含量A血? HHb 酸性弱,与CO2的亲和力高,易与CO2结合,生成HHbNHCOOH,也容易与H+结合,使H2CO3解离过程中产生的H+被及时移去,有利于反应向右进行,提高CO2运输的量。,(四) 影响CO2运输的因素 1.O2与Hb结合的氧合作用对CO2运输的影响 HbNH2O2+H+CO2 HbO2的酸性高,难与CO2结合,反应向左进行; 在组织中,HbO2释放出O2而成为HHb,何尔登效应促使血液摄取并结合CO2 。 HHb的酸性低,易与CO2结合
29、,反应向右进行; 在肺中,Hb与O2结合,促使CO2释放。 CO2通过波尔效应影响O2的结合合释放, O2通过何尔登效应影响CO2的结合和释放。 2.PCO2差对CO2运输的影响 因HCO3-运输形式的反应方向取决于PCO2差。,在肺脏,在组织,HHbNHCOOHO2,复习思考题 1.Hb氧解离曲线特征如何?其生理意义如何? 2.影响氧解离曲线的因素有哪些?为什么? 3.波尔效应有何生理意义? 4.CO2运输的形式有哪些?各有何特征? 5.影响CO2运输的因素有哪些? 6.何尔登效应有何生理意义? 7.为什么血PO2,CO2解离曲线会下移? 8.为什么V血CO2的含量A血?,第四节呼吸运动的调
30、节,基本呼吸中枢,本节讨论的中心内容:调节呼吸运动的中枢?呼吸为什么有节律?调节呼吸运动的环节?,一、呼吸中枢 呼吸中枢是指(分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位)产生和调节呼吸运动的神经细胞群。正常呼吸运动是在各呼吸中枢的相互配合下进行的。 早先分段横切脑干等研究发现:延髓是呼吸基本中枢,脑桥是呼吸调整中枢。,(一)脑干呼吸神经元 微电极等技术研究发现:CNS内有些N元呈节律性放电,并且放电节律与呼吸周期有关,其类型有: 吸气N元(I-N元):在吸气相放电 呼气N元(E-N元): 在呼气相放电 跨时相N元 I-EN元:吸气相放电并延续到呼气相 E-IN元:呼气相放电并延续到吸气相,呼
31、吸N元放电类型模式,(二)呼吸神经元的分布 1.脑桥呼吸神经元组: 主要集中于旁臂内侧核和Kolliker-Fuse核,前者存在E-N元和跨时相N元;后者存在I-N元。 脑桥呼吸N元与延髓背侧、腹侧呼吸N元之间存在双向联系,部分N元轴突还投射到脊髓膈肌运动N元群。 脑桥呼吸N元的作用为限制吸气,促使吸气向呼气转换。相当于早先研究发现的呼吸调整中枢。,2.延髓背侧呼吸神经元组(DRG): 主要集中于孤束核的腹外侧部,大多数属I-N元,E-N元仅占56,轴突投射到膈肌和肋间外肌运动N元,引起吸气。,3.延髓腹侧呼吸神经元组(VRG): 按功能又分如下区域: 后疑核尾段: 面N后核头段: 疑核中段:
32、 疑核头段:,主含E-N元,轴突投射到肋间内肌和腹肌运动N元,引起主动呼气;,又称包钦格复合体,主含E-N元,轴突投射到脊髓和延髓内侧部,抑制I-N元的活动;,主含I-N元,支配膈肌和肋间外肌运动N元,引起吸气;还含有直接支配咽喉部辅助呼吸肌的I-N元和E-N元;,是含有各类呼吸性中间N元的过度区,称为前包钦格复合体,被认为是呼吸节律发源部位。,(三)呼吸节律形成的机制 呼吸节律形成的机制,尚未完全阐明。 1.基本呼吸节律形成的起源部位: 早已肯定是在延髓,但其确切部位尚不完全清楚;近代研究发现延髓头端前包钦格复合体是其关键部位。 2.基本呼吸节律形成的学说:,(1)起步细胞学说:节律性呼吸是
33、由延髓内具有起步样活动的N元的节律性兴奋引起的。在新生动物离体脑片的研究表明,前包钦格复合体中存在着类似的电压依赖性起步N元,被认为是呼吸节律发源部位。但由于方法学的限制,尚难以证实在成年整体动物也存在这样的N元。,(2)N元网络学说:该学说认为,节律性呼吸依赖于延髓内呼吸N元之间复杂的相互联系和相互作用。在此基础上提出了多种模型,如吸气活动发生器和吸气切断机制模型。,吸气活动发生器模型: 延髓内有些呼吸N元具有吸气活动发生器样的功能,它在H+、CO2 或其它传入冲动的作用下兴奋,并且引起: 向下兴奋延髓I-N元脊髓吸气肌运动N元吸气;向上兴奋脑桥呼吸调整中枢抑制延髓I-N元;兴奋吸气切断机制
34、N元。,吸气切断机制模型:,兴奋总和达到某一阈值,反馈抑制延髓I-N元的活动,延髓内有些呼吸N元具有吸气时接受 (吸气活动发生器、 延髓I-N元、 脑桥呼吸调整中枢和肺牵张感受器)的 兴 奋 冲 动,切断吸气,从而使吸气转化为呼气,吸气活动发生器和吸气切断机制模型,吸气活动发生器:当H+ CO2 等作用下兴奋并引起: 向下兴奋延髓I-N元脊髓吸气肌运动N元吸气;向上兴奋脑桥呼吸调整中枢;兴奋吸气切断机制N元。 吸气切断机制:当接受到吸气活动发生器、延髓I-N元、脑桥呼吸调整中枢和肺牵张感受器的冲动,兴奋总和达到某一阈值,反馈抑制延髓I-N元,切断吸气,从而使吸气转化为呼气。,H+ CO2,二、
35、呼吸运动的反射性调节(一)肺牵张反射(黑-伯反射) 指肺扩张或萎陷引起的吸气抑制或兴奋的反射。包括肺扩张、肺缩小反射。 1.肺萎陷反射(肺缩小反射) 肺萎陷较明显时引起吸气的反射。 在平静呼吸调节中的意义不大,但对阻止呼气过深和肺不张等可能起一定作用。,2.肺扩张反射: 过程:肺扩张肺牵感器兴奋迷走N延髓兴奋吸气切断机制N元吸气转化为呼气 。 意义: 加速吸气和呼气的交替,使呼吸频率增加。与呼吸调整中枢共同调节呼吸频率和深度。 特征:敏感性有种属差异; 正常成人平静呼吸时这种反射不明显,深呼吸时可能起作用; 病理情况下(肺充血、肺水肿等)肺顺应性降低时起重要作用。,1.外周化学感受器 存在于颈
36、动脉体和主动脉体,前者主要参入呼吸调节,后者则在循环调节方面较为重要。 颈动脉体内含型细胞和型细胞,周围包绕以毛细血管窦,血供丰富。 功能上型细胞起着感受器的作用,型细胞类似神经胶质细胞。 适宜刺激:对PO2、PCO2、H+高度敏感(对PO2敏感,对O2含量不敏感),且三者对化学感受器的刺激有相互增强的现象。 当型细胞受到上述三者刺激时,细胞浆内Ca2+,触发内含的ACh等递质释放,引起传入神经纤维兴奋。,(二)化学感受性反射调节,颈动脉体和主动脉体化学感受性反射,PO2 H+ PCO2 等,颈动脉体和主动脉体外周化学感受器(+),窦、弓N,孤 束 核,心血管中枢兴奋性改变,呼吸中枢(+),心
37、率、冠脉舒心输出量,皮肤、内脏骨骼肌血管缩,心率、心输出量、外周阻力,外周阻力心输出量,血 压,呼吸加深加快,间接,2.中枢化学感受器 位于延髓腹侧表面下0.2mm的区域,可分为头、中、尾三部分。头区、尾区具有化学感受性,中区不具有化学感受性。 适宜刺激:对H+高度敏感,不感受缺O2的刺激。因血液中H+不易透过血-脑屏障,乃通过CO2易透过血-脑屏障进入脑脊液:CO2H2OH2CO3H+HCO3- 发挥刺激作用的。,3. CO2、H+和低O2对呼吸运动的调节 (1)CO2: 1时呼吸开始加深;CO24时呼吸加深加快,肺通气量1倍以上; 6时肺通气量可增大6-7倍; 7以上呼吸减弱=CO2麻醉。
38、CO2呼吸减慢(过度通气后可发生呼吸暂停)。 机制:,呼吸加深加快,延髓呼吸中枢+,外周化学感受器+,中枢化学感受器+,CO2透过血脑屏障进入脑脊液: CO2H2OH2CO3H+HCO3-,CO2,特点: CO2兴奋呼吸的作用,以中枢途径为主;但因脑脊液中碳酸酐酶含量很少,故潜伏期较长; CO2兴奋呼吸的中枢途径是通过H+的间接作用(血液中的H+不易透过血-脑屏障); CO2兴奋呼吸的外周途径虽然为次,但当动脉血PCO2突然增高或中枢化学感受器对CO2的敏感性降低(CO2 麻醉)时,起着重要作用。,(2)H+: H+呼吸加强 H+呼吸抑制 H+呼吸抑制 机制:类似CO2。 特点: 主要通过刺激
39、外周化学感受器而引起的 H+对呼吸的,调节作用PCO2;H+呼吸CO2排出过多PCO2 限制了对呼吸的加强作用呼吸抑制甚至停止。,;,(3)低氧: 缺氧对呼吸中枢的直接作用是抑制,并与缺氧程度呈正相关: 轻度缺氧时:通过外周化学感受器的传入冲动兴奋呼吸中枢的作用,能对抗缺氧对中枢的直接抑制作用,表现为呼吸增强。 严重缺氧时:来自外周化学感受器的传入冲动,对抗不了缺氧对呼吸中枢的抑制作用,因而可使呼吸减弱,甚至停止。 特点:缺氧对呼吸的刺激作用远不及PCO2和H+作用明显,仅在动脉血PO280mmHg以下时起作用; 当长期高CO2和低O2状态(严重肺水肿、肺心病),中枢化学感受器对高CO2发生适
40、应,此时低O2对外周化学感受器的刺激成为驱动呼吸的主要刺激。若给予高O2吸入会导致呼吸停止。,(4)CO2、H+和低O2在呼吸调节中的相互作用,由图中可见,当只改变一个因素时(其他因素不变),三者引起的肺通气反应的程度基本接近。 然而,往往是一种因素的改变会引起其他一、两种因素相继改变或几种因素的同时改变。,由图可见,当一种因素改变而另两种因素不加控制时,作用强度PCO2H+PO2。 其原因为:当PCO2时,H+也会,二者的作用发生总和,使肺通气反应较单因素的PCO2时明显;H+时,因肺通气,呼出CO2,导致PCO2和H+,两者部分抵消了单因素H+的作用强度;PO2时,因肺通气,呼出CO2,使
41、PCO2和H+,减弱了单因素PO2的作用强度。 表明三者的作用是相互影响的。,(三)呼吸肌本体感受性反射 肌梭和腱器官是呼吸肌的本体感受器。肌梭对机械牵拉敏感,属长度感受器,由脊髓前角N元支配;腱器官检测呼吸肌的收缩强度,属张力感受器,由脊髓前角N元支配。 当吸气阻力升高时呼吸肌本体感受器兴奋传入冲动频率和N元同步兴奋反射性增强吸气肌收缩力,以克服阻力保证肺通气量。 特征:平静呼吸时作用不明显,当运动或气道阻力升高(如支气管痉挛)时作用明显。,(四)其他反射 1.咳嗽反射 咳嗽时可将呼吸道内异物或分泌物排出,但剧烈咳嗽时,因胸膜腔内压,阻碍V血回流,使V压和脑脊液压。 2.喷嚏反射 喷嚏时清除
42、鼻腔内的刺激物。 3.肺毛细血管旁感受器引起的呼吸反射 肺毛细血管充血、肺泡壁间质积液时,肺毛细血管旁感受器(J-感受器)受到刺激,反射性引起呼吸暂停,继以浅快呼吸、Bp、心率。 4.刺激某些穴位引起的呼吸效应 针刺“人中”可以急救全麻手术等情况下出现的呼吸停止。在麻醉以外发生呼吸暂停时,刺激“素廖”可以兴奋呼吸。 5.血压对呼吸的影响 血压大幅度变化时,可反射性影响呼吸运动:Bp呼吸;Bp呼吸。,三、呼吸运动的随意调节 脑干对呼吸运动的控制属于不随意的自主控制,大脑皮层通过皮层-脊髓束和皮层-红核-脊髓束直接控制呼吸肌的活动,可随意控制呼吸运动,使呼吸运动与其他躯体运动相协调,完成诸如发声、
43、讲话、唱歌等动作。 但这种控制是有一定限度的。如潜水时,需要屏气,但不能无限制屏气:屏气后A血PO2渐,PCO2渐,对呼吸中枢的刺激渐,最终将克服大脑皮层的随意控制而出现呼吸运动。 临床有时可观察到自主呼吸核随意呼吸分离的现象,如当自主控制通路受损后,自主呼吸运动消失,此时患者必须“记住”要进行呼吸,一旦入睡或注意力转移时,呼吸运动即停止。,四、异常呼吸(一)陈-施呼吸(Cheyne-Stokes breathing),原因:肺-脑循环时间延长(如心衰),导致泡气的PO2和PCO2的信息不能及时传递到中枢及外周化学感受器,此时脑PCO2,增强对呼吸的刺激,触发陈-施呼吸;呼吸中枢反馈增益(PC
44、O2等变化所引起的肺通气反应幅度)增加,导致对PO2和PCO2变化的肺通气反应过强。 临床:在缺氧、睡眠、脑干损伤等情况下可出现。,特点:呼吸渐增强增快又渐减弱减慢,与呼吸暂停交替出现,每个周期约45s3min。,(二)比奥呼吸(Biot breathing) 特点:一此或多次强呼吸后,继以较长时间的呼吸暂停,之后又再次出现这样的呼吸。,临床:出现于脑损伤、脑脊液压力升高、脑膜炎等疾病。常是死亡前出现的危急症状。,原因:尚不清楚,可能是疾病已侵及延髓,损害了呼吸中枢。,(三)睡眠呼吸暂停(sleep apnea) 大约有1/3的正常人在睡眠时会出现周期性呼吸暂停(持续暂停10s以上,动脉血氧饱
45、和度下降75%以上)。长期发生睡眠呼吸暂停会导致嗜睡、肺A压高、右心衰竭等疾病。 睡眠呼吸暂停会发生在睡眠各个时相,但以浅慢波睡眠期和异相睡眠期为多。 睡眠呼吸暂停分为: 1.中枢性:特征是呼吸运动完全消失,膈N无放电活动。 2.阻塞性:是上呼吸道塌陷阻塞(舌大、悬雍垂大、软腭松弛者)所致,因而有呼吸运动但无气流。 觉醒是中断睡眠呼吸暂停的主要原因。打鼾是上呼吸道阻塞的早期表现。,五、运动时呼吸运动的变化及调节,通气量骤升与条件反射有关;也与运动时本体感受器兴奋反射性地刺激呼吸有关。 通气量的缓慢升高与稳定在一定高水平,可能与运动中动脉血pH、PCO2、PO2在保持相对稳定的前提,随呼吸呈周期性波动通过化学感受器的作用,反射性调节呼吸有关。 与运动时O2供O2耗,欠下了“氧债”,运动停止后,需先偿还“氧债”,故不能立即恢复到运动前水平。,复习思考题 1.什么是呼吸神经元?分布于脑干哪些区域? 2.前包钦格复合体被认为是新生大鼠呼吸节律发源部位,有何依据? 3.切除外周化学感受器后,低氧对呼吸运动有何影响? 4.如果将无效腔增加1倍,呼吸运动会有什么变化?其机制如何? 5.为什么慢性阻塞性肺病患者不能吸高浓度氧? 6.试述缺氧和CO2增多时对呼吸影响的主要机制。 7.试述长管呼吸时呼吸运动加深加快的机制。,