《交直流电机的伺服控制精密驱动技术课件.ppt》由会员分享,可在线阅读,更多相关《交直流电机的伺服控制精密驱动技术课件.ppt(78页珍藏版)》请在三一办公上搜索。
1、交直流电机的伺服控制,精密驱动技术,第 2 章,交直流电机的伺服控制精密驱动技术第 2 章,2.1 直流伺服驱动技术,2.1 直流伺服驱动技术,内容提要,直流调速方法直流调速电源直流调速控制,内容提要直流调速方法,引 言,直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的伺服领域中得到了广泛的应用。 由于直流伺服控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流伺服控制系统的基础。因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流伺服控制系统。,引 言 直流电动机具有良好的起、制动性能,交直流电机的伺服控制精密驱动技术课件,交直流电机
2、的伺服控制精密驱动技术课件,交直流电机的伺服控制精密驱动技术课件,根据直流电机转速方程,2.1.1 直流调速方法,(1-1),根据直流电机转速方程,由式(1-1)可以看出,有三种方法调节电动机的转速: (1)调节电枢供电电压 U; (2)减弱励磁磁通 ; (3)改变电枢回路电阻 R。,由式(1-1)可以看出,有三种方法调节电动机的转,(1)调压调速,工作条件: 保持励磁 = N ; 保持电阻 R = Ra调节过程: 改变电压 UN U U n , n0 调速特性: 转速下降,机械特性曲线平行下移。,(1)调压调速工作条件:nn0OIILUNU 1U 2U 3,(2)调阻调速,工作条件: 保持励
3、磁 = N ; 保持电压 U =UN ;调节过程: 增加电阻 Ra R R n ,n0不变;调速特性: 转速下降,机械特性曲线变软。,(2)调阻调速工作条件:nn0OIILR aR 1R 2R,(3)调磁调速,工作条件: 保持电压 U =UN ; 保持电阻 R = R a ;调节过程: 减小励磁 N n , n0 调速特性: 转速上升,机械特性曲线变软。,调磁调速特性曲线,(3)调磁调速工作条件:nn0OTeTL N 1 2,三种调速方法的性能与比较,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往
4、只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以调压调速为主。,三种调速方法的性能与比较 对于要求在一定范围内,闭环控制的直流调速系统,本节着重讨论基本的闭环控制系统及其分析与设计方法。,闭环控制的直流调速系统 本节着重讨论基本的闭环控制,本节提要,1.1 直流调速系统用的可控直流电源1.2 晶闸管-电动机系统(V-M系统)的主要问题1.3 直流脉宽调速系统的主要问题1.4 反馈控制闭环直流调速系统的稳态分析和设计1.5 反馈控制闭环直流调速系统的动态分析和设计1.6 比例积分控制规律和无静差调速系统,本节提要1.1 直流调速系统用的可控直
5、流电源,1.1 直流调速系统用的可控直流电源,根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。 本节介绍几种主要的可控直流电源。,1.1 直流调速系统用的可控直流电源 根据前面,常用的可控直流电源有以下三种,旋转变流机组用交流电动机和直流发电机组成机组,以获得可调的直流电压。静止式可控整流器用静止式的可控整流器,以获得可调的直流电压。直流斩波器或脉宽调制变换器用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。,常用的可控直流电源有以下三种旋转变流机组用交流电动机和直,1.1.1 旋转变流机组,图1
6、-1旋转变流机组供电的直流调速系统(G-M系统),1.1.1 旋转变流机组图1-1旋转变流机组供电的直流调速,G-M系统工作原理,由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n 。 这样的调速系统简称G-M系统,国际上通称Ward-Leonard系统。,G-M系统工作原理 由原动机(柴油机、交流异步或同,G-M系统特性,G-M系统特性,1.1.2 静止式可控整流器,图1-3 晶闸管可控整流器供电的直流调速系统(V-M系统),1.1.2 静止式可控整流器图1
7、-3 晶闸管可控整流器,V-M系统工作原理,晶闸管-电动机调速系统(简称V-M系统,又称静止的Ward-Leonard系统),图中VT是晶闸管可控整流器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相位,即可改变整流电压Ud ,从而实现平滑调速。,V-M系统工作原理 晶闸管-电动机调速系统(简称V,V-M系统的特点与G-M系统相比较:,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。晶闸管可控整流器的功率放大倍数在10 4 以上,其门极电流可以直接用晶体管来控制,不再像直流发电机那样需要较大功率的放大器。在控制作用的快速性上,变流机组是秒级
8、,而晶闸管整流器是毫秒级,这将大大提高系统的动态性能。,V-M系统的特点与G-M系统相比较:晶闸管整流装置不仅在经,V-M系统的问题,由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。晶闸管对过电压、过电流和过高的dV/dt与di/dt 都十分敏感,若超过允许值会在很短的时间内损坏器件。由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。,V-M系统的问题由于晶闸管的单向导电性,它不允许电流反向,,1.1.3 直流斩波器或脉宽调制变换器,在干线铁道电力机车、工矿电力机车、城市有轨和无轨电车和地铁电机车等电力牵引设备上,常采用直流串励或复励电动机,由恒压
9、直流电网供电,过去用切换电枢回路电阻来控制电机的起动、制动和调速,在电阻中耗电很大。,1.1.3 直流斩波器或脉宽调制变换器 在干,1. 直流斩波器的基本结构,图1-5 直流斩波器-电动机系统的原理图和电压波形,a)原理图b)电压波形图tOuUsUdTton控制电路M,斩波器的基本控制原理,在原理图中,VT 表示电力电子开关器件,VD 表示续流二极管。当VT 导通时,直流电源电压 Us 加到电动机上;当VT 关断时,直流电源与电机脱开,电动机电枢经 VD 续流,两端电压接近于零。如此反复,电枢端电压波形如图1-5b ,好像是电源电压Us在ton 时间内被接上,又在 T ton 时间内被斩断,故
10、称“斩波”。,斩波器的基本控制原理 在原理图中,VT 表示,电动机得到的平均电压为,输出电压计算,(1-2),式中 T 晶闸管的开关周期; ton 开通时间; 占空比, = ton / T = ton f ;其中 f 为开关频率。,电动机得到的平均电压为 输出电压计算(1-2)式中,为了节能,并实行无触点控制,现在多用电力电子开关器件,如快速晶闸管、GTO、IGBT等。 采用简单的单管控制时,称作直流斩波器,后来逐渐发展成采用各种脉冲宽度调制开关的电路,脉宽调制变换器(PWM-Pulse Width Modulation)。,为了节能,并实行无触点控制,现在多用电力电子,斩波电路三种控制方式,
11、根据对输出电压平均值进行调制的方式不同而划分,有三种控制方式:T 不变,变 ton 脉冲宽度调制(PWM);ton不变,变 T 脉冲频率调制(PFM);ton和 T 都可调,改变占空比混合型。,斩波电路三种控制方式根据对输出电压平均值进行调制的方式不同,PWM系统的优点,(1)主电路线路简单,需用的功率器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;,PWM系统的优点(1)主电路线路简单,需用的功率器件少;,PWM系统的优点(续),(5
12、)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。,PWM系统的优点(续)(5)功率开关器件工作在开关状态,导通,小 结,三种可控直流电源,V-M系统在上世纪6070年代得到广泛应用,目前主要用于大容量系统。 直流PWM调速系统作为一种新技术,发展迅速,应用日益广泛,特别在中、小容量的系统中,已取代V-M系统成为主要的直流调速方式。,返回目录,小 结 三种可控直流电源,V-M系统在上世,1.2 晶闸管-电动机系统(V-M系统) 的主要问题,本节讨论V-M系统的几个主要问题:(1)触发脉冲相位控
13、制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和 传递函数。,1.2 晶闸管-电动机系统(V-M系统),在如图可控整流电路中,调节触发装置 GT 输出脉冲的相位,即可很方便地改变可控整流器 VT 输出瞬时电压 ud 的波形,以及输出平均电压 Ud 的数值。,1.2.1 触发脉冲相位控制,在如图可控整流电路中,调节触发装置 GT 输,等效电路分析,如果把整流装置内阻移到装置外边,看成是其负载电路电阻的一部分,那么,整流电压便可以用其理想空载瞬时值 ud0 和平均值 Ud0 来表示,相当于用图示的等效电路代
14、替实际的整流电路。,图1-7 V-M系统主电路的等效电路图,Ud0IdE 等效电路分析 如果把整流装置内阻移,瞬时电压平衡方程,(1-3),EidLR 瞬时电压平衡方程(1-3),对ud0进行积分,即得理想空载整流电压平均值Ud0 。 用触发脉冲的相位角 控制整流电压的平均值Ud0是晶闸管整流器的特点。 Ud0与触发脉冲相位角 的关系因整流电路的形式而异,对于一般的全控整流电路,当电流波形连续时,Ud0 = f () 可用下式表示,对ud0进行积分,即得理想空载整流电压平均值Ud,1.3 直流脉宽调速系统的主要问题,自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控
15、制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。,1.3 直流脉宽调速系统的主要问题 自,本段提要,(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。,本段提要(1)PWM变换器的工作状态和波形;,1.3.1 PWM变换器的工作状态和电压、 电流波形,PWM变换器的作用是:用PWM调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压系列,从而可以改变平均输出电压的大小,以调节电机转速。 PWM变换器电路有多种形式,主要分为不可逆与可逆两大类,下面分
16、别阐述其工作原理。,1.3.1 PWM变换器的工作状态和电压、, 主电路结构,2,1,图中:Us为直流电源电压,C为滤波电容器,VT为功率开关器件,VD为续流二极管,M 为直流电动机,VT 的栅极由脉宽可调的脉冲电压系列Ug驱动, 主电路结构21图中:Us为直流电源电压,C为滤波电容器,,1. 不可逆PWM变换器,(1)简单的不可逆PWM变换器 简单的不可逆PWM变换器-直流电动机系统主电路原理图如图1-16所示,功率开关器件可以是任意一种全控型开关器件,这样的电路又称直流降压斩波器。,1. 不可逆PWM变换器(1)简单的不可逆PWM变换器,工作状态与波形,在一个开关周期内,当0 t ton时
17、,Ug为正,VT导通,电源电压通过VT加到电动机电枢两端;当ton t T 时, Ug为负,VT关断,电枢失去电源,经VD续流。,O,工作状态与波形在一个开关周期内,U, iUdEidUstto,电机两端得到的平均电压为(1-17)式中 = ton / T 为 PWM 波形的占空比,,输出电压方程,改变 ( 0 1 )即可调节电机的转速,若令 = Ud / Us为PWM电压系数,则在不可逆 PWM 变换器 = (1-18),电机两端得到的平均电压为输出电压方程改变 ( 0 ,(2)有制动的不可逆PWM变换器电路,在简单的不可逆电路中电流不能反向,因而没有制动能力,只能作单象限运行。需要制动时,
18、必须为反向电流提供通路,如图1-17a所示的双管交替开关电路。当VT1 导通时,流过正向电流 + id ,VT2 导通时,流过 id 。应注意,这个电路还是不可逆的,只能工作在第一、二象限, 因为平均电压 Ud 并没有改变极性。,(2)有制动的不可逆PWM变换器电路 在简单的不,图1-17a 有制动电流通路的不可逆PWM变换器,主电路结构,M,+,-,VD2,Ug2,Ug1,VT2,VT1,VD1,E,4,1,2,3,C,Us,+,VT2,Ug2,VT1,Ug1,图1-17a 有制动电流通路的不可逆PWM变换器 主电路结,工作状态与波形,一般电动状态 在一般电动状态中,始终为正值(其正方向示于
19、图1-17a中)。设ton为VT1的导通时间,则一个工作周期有两个工作阶段:在0 t ton期间, Ug1为正,VT1导通, Ug2为负,VT2关断。此时,电源电压Us加到电枢两端,电流 id 沿图中的回路1流通。,工作状态与波形一般电动状态,一般电动状态(续),在 ton t T 期间, Ug1和Ug2都改变极性,VT1关断,但VT2却不能立即导通,因为id沿回路2经二极管VD2续流,在VD2两端产生的压降给VT2施加反压,使它失去导通的可能。 因此,实际上是由VT1和VD2交替导通,虽然电路中多了一个功率开关器件,但并没有被用上。,一般电动状态(续)在 ton t T 期间, Ug1,输出
20、波形: 一般电动状态的电压、电流波形与简单的不可逆电路波形(图1-16b)完全一样。,b)一般电动状态的电压、电流波形,U, iUdEidUsttonT0O输出波形:b)一般电动状,工作状态与波形(续),制动状态 在制动状态中, id为负值,VT2就发挥作用了。这种情况发生在电动运行过程中需要降速的时候。这时,先减小控制电压,使 Ug1 的正脉冲变窄,负脉冲变宽,从而使平均电枢电压Ud降低。但是,由于机电惯性,转速和反电动势E还来不及变化,因而造成 E Ud 的局面,很快使电流id反向,VD2截止, VT2开始导通。,工作状态与波形(续)制动状态,输出波形,c)制动状态的电压电流波形,U, i
21、UdEidUsttonT04444333VT2VT2,工作状态与波形(续),轻载电动状态 有一种特殊情况,即轻载电动状态,这时平均电流较小,以致在关断后经续流时,还没有到达周期 T ,电流已经衰减到零,此时,因而两端电压也降为零,便提前导通了,使电流方向变动,产生局部时间的制动作用。,工作状态与波形(续)轻载电动状态,轻载电动状态,一个周期分成四个阶段:第1阶段,VD1续流,电流 id 沿回路4流通;第2阶段,VT1导通,电流 id 沿回路1流通;第3阶段,VD2续流,电流 id 沿回路2流通;第4阶段,VT2导通,电流 id 沿回路3流通。,轻载电动状态,一个周期分成四个阶段:,在1、4阶段
22、,电动机流过负方向电流,电机工作在制动状态; 在2、3阶段,电动机流过正方向电流,电机工作在电动状态。 因此,在轻载时,电流可在正负方向之间脉动,平均电流等于负载电流,其输出波形见图1-17d。,在1、4阶段,电动机流过负方向电流,电机工作在制,输出波形,d)轻载电动状态的电流波形,输出波形d)轻载电动状态的电流波形4123Tton0U,小 结,表1-3 二象限不可逆PWM变换器的不同工作状态,小 结表1-3 二象限不可逆PWM变换器的不同工作状,2. 桥式可逆PWM变换器,可逆PWM变换器主电路有多种形式,最常用的是桥式(亦称H形)电路,如图1-20所示。 这时,电动机M两端电压的极性随开关
23、器件栅极驱动电压极性的变化而改变,其控制方式有双极式、单极式、受限单极式等多种,这里只着重分析最常用的双极式控制的可逆PWM变换器。,2. 桥式可逆PWM变换器 可逆PWM变换器主电,+Us,Ug4,Ug3,VD1,VD2,VD3,VD4,Ug1,Ug2,VT1,VT2,VT4,VT3,1,3,2,A,B,4,VT1,Ug1,VT2,Ug2,VT3,Ug3,VT4,Ug4,H形主电路结构,图1-18 桥式可逆PWM变换器,+UsUg4M+-Ug3VD1VD2VD3VD4Ug1Ug2,双极式控制方式,(1)正向运行:第1阶段,在 0 t ton 期间, Ug1 、 Ug4为正, VT1 、 VT
24、4导通, Ug2 、 Ug3为负,VT2 、 VT3截止,电流 id 沿回路1流通,电动机M两端电压UAB = +Us ;第2阶段,在ton t T期间, Ug1 、 Ug4为负, VT1 、 VT4截止, VD2 、 VD3续流, 并钳位使VT2 、 VT3保持截止,电流 id 沿回路2流通,电动机M两端电压UAB = Us ;,双极式控制方式(1)正向运行:,双极式控制方式(续),(2)反向运行:第1阶段,在 0 t ton 期间, Ug2 、 Ug3为负,VT2 、 VT3截止, VD1 、 VD4 续流,并钳位使 VT1 、 VT4截止,电流 id 沿回路4流通,电动机M两端电压UAB
25、 = +Us ;第2阶段,在ton t T 期间, Ug2 、 Ug3 为正, VT2 、 VT3导通, Ug1 、 Ug4为负,使VT1 、 VT4保持截止,电流 id 沿回路3流通,电动机M两端电压UAB = Us ;,双极式控制方式(续)(2)反向运行:,输出波形,输出波形U, iUdEid+UsttonT0-UsOb),输出平均电压,双极式控制可逆PWM变换器的输出平均电压为(1-19) 如果占空比和电压系数的定义与不可逆变换器中相同,则在双极式控制的可逆变换器中 = 2 1 (1-20)注意:这里 的计算公式与不可逆变换器中的公式就不一样了。,输出平均电压 双极式控制可逆PWM变换器
26、的输出平均,调速范围,调速时, 的可调范围为01, 10.5时, 为正,电机正转;当 0.5时, 为负,电机反转;当 = 0.5时, = 0 ,电机停止。,调速范围 调速时, 的可调范围为01, 1,注 意:,当电机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的。这个交变电流的平均值为零,不产生平均转矩,徒然增大电机的损耗,这是双极式控制的缺点。但它也有好处,在电机停止时仍有高频微振电流,从而消除了正、反向时的静摩擦死区,起着所谓“动力润滑”的作用。,注 意: 当电机停止时电枢电压并不等于零,性能评价,双极式控制的桥式可逆PWM变换器有下列优点:(1)电流一定连续
27、;(2)可使电机在四象限运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速平稳性好,系统的调速范围可达1:20000左右;(5)低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。,性能评价 双极式控制的桥式可逆PWM变换器有下,性能评价(续),双极式控制方式的不足之处是: 在工作过程中,4个开关器件可能都处于开关状态,开关损耗大,而且在切换时可能发生上、下桥臂直通的事故,为了防止直通,在上、下桥臂的驱动脉冲之间,应设置逻辑延时。,性能评价(续) 双极式控制方式的不足之处是:,1.3.2 直流脉宽调速系统的机械特性,由于采用脉宽调制,严格地说,即使在稳态情况下,脉宽调速
28、系统的转矩和转速也都是脉动的,所谓稳态,是指电机的平均电磁转矩与负载转矩相平衡的状态,机械特性是平均转速与平均转矩(电流)的关系。,1.3.2 直流脉宽调速系统的机械特性 由于采,采用不同形式的PWM变换器,系统的机械特性也不一样。对于带制动电流通路的不可逆电路和双极式控制的可逆电路,电流的方向是可逆的,无论是重载还是轻载,电流波形都是连续的,因而机械特性关系式比较简单,现在就分析这种情况。,采用不同形式的PWM变换器,系统的机械特性也不一,对于带制动电流通路的不可逆电路,电压平衡方程式分两个阶段,式中 R、L 电枢电路的电阻和电感。,带制动的不可逆电路电压方程,(0 t ton) (1-21
29、),(ton t T) (1-22),对于带制动电流通路的不可逆电路,电压平衡方程式分两,对于双极式控制的可逆电路,只在第二个方程中电源电压由 0 改为 Us ,其他均不变。于是,电压方程为,( 0 t ton ) (1-23),双极式可逆电路电压方程,(ton t T ) (1-24),对于双极式控制的可逆电路,只在第二个方程中电,机械特性方程,按电压方程求一个周期内的平均值,即可导出机械特性方程式。无论是上述哪一种情况,电枢两端在一个周期内的平均电压都是 Ud = Us,只是 与占空比 的关系不同,分别为式(1-18)和式(1-20)。,机械特性方程 按电压方程求一个周期内的平,平均电流和
30、转矩分别用 Id 和 Te 表示,平均转速 n = E/Ce,而电枢电感压降的平均值 L did / dt 在稳态时应为零。 于是,无论是上述哪一组电压方程,其平均值方程都可写成 (1-25),平均电流和转矩分别用 Id 和 Te 表示,平,机械特性方程,(1-26)或用转矩表示, (1-27)式中 Cm = KmN 电机在额定磁通下的转矩系数; n0 = Us / Ce 理想空载转速,与电压系数成正比。,机械特性方程,PWM调速系统机械特性,图1-20 脉宽调速系统的机械特性曲线(电流连续),n0sUs /Ce,nId , TeavOn0s0.75n0s0.5n0s0,说 明,图中所示的机械
31、曲线是电流连续时脉宽调速系统的稳态性能。图中仅绘出了第一、二象限的机械特性,它适用于带制动作用的不可逆电路,双极式控制可逆电路的机械特性与此相仿,只是更扩展到第三、四象限了。对于电机在同一方向旋转时电流不能反向的电路,轻载时会出现电流断续现象,把平均电压抬高,在理想空载时,Id = 0 ,理想空载转速会翘到 n0sUs / Ce 。,说 明图中所示的机械曲线是电流连续时脉宽调速系统的稳态,目前,在中、小容量的脉宽调速系统中,由于IGBT已经得到普遍的应用,其开关频率一般在10kHz左右,这时,最大电流脉动量在额定电流的5%以下,转速脉动量不到额定空载转速的万分之一,可以忽略不计。,目前,在中、小容量的脉宽调速系统中,由于IGBT已,1.3.3 PWM控制与变换器的数学模型,图1-21绘出了PWM控制器和变换器的框图,其驱动电压都由 PWM 控制器发出,PWM控制与变换器的动态数学模型和晶闸管触发与整流装置基本一致。 按照上述对PWM变换器工作原理和波形的分析,不难看出,当控制电压改变时,PWM变换器输出平均电压按线性规律变化,但其响应会有延迟,最大的时延是一个开关周期 T 。,1.3.3 PWM控制与变换器的数学模型 图,