《化工仪表及其自动化控制第03流量部分章课件.ppt》由会员分享,可在线阅读,更多相关《化工仪表及其自动化控制第03流量部分章课件.ppt(80页珍藏版)》请在三一办公上搜索。
1、流量测量,流量检测的主要方法和分类 节流式流量计 转子流量计 电磁流量计 涡轮流量计 漩涡流量计 容积式流量计 其它流量检测方法 超声波式流量检测 质量流量检测方法, ,流量测量流量检测的主要方法和分类,几个概念,流量通常是指单位时间内流经管道某截面的流体的数量,也就是所谓的瞬时流量;在某一段时间内流过流体的总和,称为总量或累积流量。,体积流量,以体积表示的瞬时流量用 qv 表示,单位为 m3/s 以体积表示的累积流量用 Qv 表示,单位为 m3,质量流量,以质量表示的瞬时流量用 qm 表示,单位为 kg/s以质量表示的累积流量用 Qm 表示,单位为 kg,标态下的体积流量,由于气体是可压缩的
2、,流体的体积会受工况的影响,为了便于比较,工程上通常把工作状态下测得的体积流量换算成标准状态(温度为20,压力为一个标准大气压)下的体积流量。标准状态下的体积流量用qvn表示,单位为Nm3/s。,几个概念 流量通常是指单位时间内流经管道某截面的流体的数,1 流量检测的主要方法和分类,流量检测方法有很多,就测量原理而言,可以分为直接测量法和间接测量法两类。直接测量法可以直接测量出管道中的体积流量或质量流量间接测量法则是通过测量出流体的(平均)流速,结合管道的截面积、流体的密度及工作状态等参数计算得出。,除了椭圆齿轮流量计直接测量体积流量、科里奥利力质量流量计之外,其它均基于间接法来流量测量,1
3、流量检测的主要方法和分类 流量检测方法有很多,就测量原理,2 节流式流量计,(a) 标准孔板,(b) 喷嘴,(c) 文丘里管,把流体流过阻力件使流束收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件。标准节流件包括标准孔板、标准喷嘴和标准文丘里管。对于标准化的节流件,在设计计算时都有统一标准的规定、要求和计算所需的有关数据及程序,可直接按照标准制造;安装和使用时不必进行标定。特殊节流件主要用于特殊介质或特殊工况条件的流量检测,它必须用实验方法单独标定。,2 节流式流量计 (a) 标准孔板(b) 喷嘴(c) 文丘里,节流原理,流动流体的能量有两种形式:静压能和动能。流体由于有压力而具有静压
4、能,又由于有流动速度而具有动能,这两种形式的能量在一定条件下是可以相互转化的。,流速,静压,123节流原理 流动流体的能量有两种形式:静压能和动能。,流量方程,流量方程 123流速静压,标准节流件(孔板),节流装置包括节流件、取压装置和符合要求的前后直管段标准节流装置是指节流件、取压装置都标准化,前后直管段符合规定要求,可以直接投入使用,标准孔板,要求: d/D 应在0.20.75之间 d不小于12.5mm 直孔厚度h应在0.005D到0.02D之间 孔板的总厚度H应在h和0.05D之间 圆锥面的斜角应在3045之间 标准喷嘴和标准文丘里管的结构参数的规定也可以查阅相关的设计手册。,有手册可查
5、,不要求记,标准节流件(孔板) 节流装置包括节流件、取压装置和符合要,标准取压方式,国家规定标准的取压方式有角接取压、法兰取压和DD/2取压。,角接取压,角接取压的两个取压口分别位于孔板上下端面与管壁的夹角处取压口可以是环隙取压口和单独钻孔取压口,环隙取压利用左右对称的两个环室把孔板夹在中间,通常要求环隙在整个圆周上穿通管道,或者每个夹持环应至少有四个开孔与管道内部连通,每个开孔的中心线彼此互成等角度,再利用导压管把孔板上下游的压力分别引出,当采用单独钻孔取压时,取压口的轴线应尽可能以90与管道轴线相交,环隙宽度和单独钻孔取压口的直径 a 通常在410mm之间 显然,环隙取压由于环室的均压作用
6、,便于测出孔板两端的平稳差压,能得到较好的测量精度,但是夹持环的加工制造和安装要求严格。当管径D500mm时,一般采用单独钻孔取压。,标准取压方式 国家规定标准的取压方式有角接取压、法兰取压,法兰取压和DD/2取压,法兰取压装置是由一对带有取压口的法兰组成取压口轴线距离孔板上、下端面均为25.4mm(1英寸),DD/2取压装置是设有取压口的管段,上、下游取压口轴线与孔板上游端面的距离分为D和D/2(D为管道的直径),法兰取压和DD/2取压 法兰取压装置是由一对带有取压口l1,节流式流量计的安装,原理总结:,节流装置,引压管,差压变送器,显示仪表/控制器,在各种标准的节流装置中以标准孔板的应用最
7、为广泛,它具有结构简单、安装使用方便的特点,适用于大流量的测量。孔板的最大缺点是流体流经节流件后压力损失较大,当工艺管路不允许有较大的压力损失时,一般不宜选用孔板流量计。标准喷嘴和标准文丘里管的压力损失较小,但结构比较复杂,不易加工。,流体在管道中正常流动(v、p),节流件使流体收束,流速增大,压力降低,节流件前后出现“压差”,“压差”与流量有关,再采用差压变送器,将差压信号转换为统一的标准信号,便于显示及控制,节流式流量计的安装 原理总结:节流装置引压管差压变送器显,节流式流量计的使用特点和要求,标准孔板应用广泛,它具有结构简单、安装方便的特点,适用于大流量的测量。孔板测量的压损大,当不允许
8、有较大的管道压损时,便不宜采用。在一般场合下,仍采用孔板为多。标准喷嘴和标准文丘里管的压力损失较孔板为小,但结构比较复杂,不易加工。标准节流装置仅适用于测量管道直径大于50mm,雷诺数在104105以上的流体;流体应当清洁,充满全部管道,不发生相变;为保证流体在节流装置前后为稳定的流动状态,在节流装置的上、下游必须配置一定长度的直管段(与管径、节流件的开孔面积以及管路上的弯头数都有关系)节流装置经过长时间的使用,会因物理磨损或者化学腐蚀,造成几何形状和尺寸的变化,从而引起测量误差,因此需要及时检查和维修,必要时更换新的节流装置,节流式流量计的使用特点和要求标准孔板应用广泛,它具有结构,节流式流
9、量计误差产生的原因,实际工况与设计要求不符,如:温度、压力、湿度以及相应的流体重度、粘度、雷诺数等参数数值发生变化,则会造成较大的误差。为了消除这种误差,必须按新工艺重新设计计算,或加以必要的修正。节流装置安装不正确节流装置安装不正确,在安装时,特别要注意节流装置的安装方向。在使用中,要保持节流装置的清洁。如在节流装置处防止有沉淀、结焦、堵塞等现象。节流装置的磨损,应注意日常检查、维修,必要时应换用新的孔板。导压管安装不正确,或有诸塞、渗漏现象,,节流式流量计误差产生的原因实际工况与设计要求不符,如:温,节流式流量计误差产生的原因,孔板本身原因:,直角边缘不锐利,测量值偏小,d太大,测量值偏小
10、,正取压孔离端面太远,测量值偏小,h太大,测量值偏大,负取压孔离端面太远,测量值偏小,测量值偏大,安装不好,孔板弯曲,可大可小,节流式流量计误差产生的原因孔板本身原因:直角边缘不锐利,3 转子流量计,h,孔板流量计:,节流面积不变,流量变化,压差发生变化,转子流量计:,压差不变,流量变化,节流面积发生变化,转子流量计主要由两个部分组成: 一是由下往上逐渐扩大的锥形管(通常用透明玻璃制成) 二是放在锥形管内可自由运动的转子。被测流体由锥形管下端进入,流经转子与锥形管之间的环隙,再从上端流出。当流体流过的时候,位于锥形管中的转子受到向上的一个力,使其浮起。当这个力正好等于转子重量减去流体对转子的浮
11、力,此时转子就停浮在一定的高度上。若流体流量突然由小变大时,作用在转子上的向上的力就加大,转子上升,环隙增大,即流通面积增大。随着环隙的增大,使流体流速变慢,流体作用在转子上的向上力也就变小。这样,转子在一个新的高度上重新平衡。这样,转子在锥形管中平衡位置的高低h与被测介质的流量大小相对应。,3 转子流量计 h孔板流量计:节流面积不变流量变化压差发生变,流量方程,转子的平衡关系:,转子和锥形管间的环隙面积相当于节流式流量计的节流孔面积,但它是变化的,并与转子高度h成近似的线性关系,因此,转子流量计的流量公式可以表示为:,式中:为仪表常数;h为转子浮起的高度。,流量与转子高度h成线性关系式中的其
12、它参数为常数,转子流量计一般只适用于就地指示。对配有电远传装置的转子流量计,也可以把反应流量大小的转子高度h转换为电信号,传送到其它仪表进行显示、记录或控制。,流量方程转子的平衡关系:转子和锥形管间的环隙面积相当于节,流量修正,转子流量计在生产的时候,是在工业基准状态(20,0.10133Mpa)下用水或空气进行刻度的。,液体流量测量时的修正,如果某转子流量计的转子高度为h,如果介质为20的水,则流量qv0与h的关系满足:,如果介质不是20的水,则流量qvf与h的关系满足:,如果被测介质的粘度和水的粘度相差不大,可以近似认为是常数,则有,刻度流量,实际流量,修正系数,流量修正 转子流量计在生产
13、的时候,是在工业,例,现有一只以水标定的转子流量计用来测量苯的流量,已知转子的材料为不锈钢(密度7.9g/cm3),苯的密度为0.83g/cm3 ,请问流量计读数为3.6L/s时,苯的实际流量是多少?,解:,修正公式,因此,质量流量的修正公式,例现有一只以水标定的转子流量计用来测量苯的流量,已知转子的材,气体流量测量时的修正,假设实际被测气体的密度为f,因此被测流体流量Qf与指示值Q0的关系是:,通常,气体流量需要把它转化成工业基准状态(T020293K,P01.0133105Pa),记被测时的压力和温度分别为:Pf、Tf,所以被测流体对应标准状态的体积流量为:,此时的密度f还是实际密度,由于
14、测量的困难,也需要把它转化成标态下的密度更为方便:,于是有修正公式,气体流量测量时的修正 假设实际被测气体的密度为f,通常,气,转子流量计的特点,转子流量计主要适合于检测中小管径、较低雷诺数的中小流量; 流量计结构简单,使用方便,工作可靠,仪表前直管段长度要求不高; 流量计的基本误差约为仪表量程的土2,量程比可达10:1 流量计的测量精度易受被测介质密度、粘度、温度、压力、纯净度、安装质量等的影响。,转子流量计的特点 转子流量计主要适合于检测中小管,4 电磁流量计,基本工作原理,导体切割磁力线,会产生电动势,适用场合,可以检测具有一定电导率的酸、碱、盐溶液,腐蚀性液体以及含有固体颗粒的的液体测
15、量,但不能检测气体、蒸汽和非导电液体的流量。,流量公式,当导电的流体在磁场中以垂直方向流动而切割磁力线时,就会在管道两边的电极上产生感应电势,感应电势的大小与磁场的强度、流体的速度和流体垂直切割磁力线的有效长度成正比:,式中:Ex为感应电势;K为比例系数;B为磁场强度;D为管道直径;v为垂直于磁力线的流体流动速度。,在管道直径D已经确定,磁场强度B维持不变时,流体的体积流量与磁感应电势成线性关系。利用上述原理制成的流量检测仪表称为电磁流量计。,4 电磁流量计 基本工作原理 导体切割磁力线,会产生电动势,电磁流量计的特点,测量导管内无可动或突出于管道内部的部件,因而压力损失极小;只要是导电的,被
16、测流体可以是含有颗粒、悬浮物等,也可以是酸、碱、盐等腐蚀性物质;流量计的输出电流与体积流量成线性关系,并且不受液体的温度、压力、密度、粘度等参数的影响;电磁流量计的量程比一般为10:1,精度较高的量程比可达100:1;测量口径范围大,可以从lmm到2m以上,特别适用于lm以上口径的水流量测量;测量精度一般优于0.5级;电磁流量计反应迅速,可以测量脉动流量;主要缺点: 被测流体必须是导电的,不能小于水的电导率 不能测量气体、蒸汽和石油制品等的流量 由于衬里材料的限制,一般使用温度为0200; 因电极嵌装在测量导管上的,使工作压力限制(一般0.25MPa),电磁流量计的特点测量导管内无可动或突出于
17、管道内部的部件,,电磁流量计的安装,可以水平安装,也可以垂直安装,但要求液体充满管道;直管段要求:前10D,后5D以上;远离磁场;变送器前后管道有时带有较大的杂散电流,一般要把变送器前后11.5m出和变送器外壳连接在一起,共同接地。,电磁流量计的安装可以水平安装,也可以垂直安装,但要求液体,5 涡轮流量计,工作原理,流体冲击涡轮叶片,使涡轮旋转,涡轮的旋转速度随流量的变化而变化,通过涡轮外的磁电转换装置可将涡轮的旋转转换成电脉冲,流量方程,5 涡轮流量计 工作原理 流体冲击涡轮叶片,使涡轮旋转,涡轮,特点和要求,流量与涡轮转速之间成线性关系;涡轮流量计的测量精度较高,可达到0.5级以上,反应迅
18、速,可测脉动流量;主要用于中小口径的流量检测;仅适用洁净的被测介质,通常在涡轮前要安装过滤装置;流量计水平安装,前后需一定长度的直管段,一般上游侧和下游侧的直管段长度要求在10D和5D以上;常温下用水标定,当介质的密度和粘度发生变化时需重新标定或进行补偿,特点和要求 流量与涡轮转速之间成线性关系;,6 漩涡流量计,工作原理,把一个漩涡发生体(非流线型对称物体)垂直插在管道中,当流体绕过漩涡发生体时会在其左右两侧后方交替产生旋转方向相反的漩涡,形成涡列,该漩涡列就称为卡门涡街只有当两列漩涡的间距h与同列中相邻漩涡的间距l满足为hl0.281条件时,卡门涡列才是稳定的。且单列漩涡产生的频率f与流体
19、流速v成正比,与柱体的特征尺寸d(漩涡发生体的迎面最大宽度)成反比,即:,流量方程,6 漩涡流量计 工作原理 把一个漩涡发生体(非流线型对称物体,特点和要求,涡街流量计输出信号(频率)不受流体物性和组分变化的影响,在一定的雷诺数范围内,几乎不受流体的温度、压力、密度、粘度等变化的影响,故用水或空气标定的漩涡流量计可用于其他液体和气体的流量测量而不需标定;管道内无可动部件,使用寿命长,压力损失小;测量精度高(约为士0.51),量程比20:1;尤其适用于大口径管道的流量测量。但是流量计安装时要求有足够的直管段长度,上游和下游的直管段分别要求不少于2OD和5D,漩涡发生体的轴线应与管路轴线垂直。,特
20、点和要求 涡街流量计输出信号(频率)不受流体物性和组分变化,7 椭圆齿轮流量计直接测量,基本工作原理,“一碗一碗”计量,V,转子每旋转一周,就排出四个由椭圆齿轮与外壳围成的半月形空腔的流体体积(4V)。在V一定的情况下,只要测出流量计的转速n就可以计算出被测流体的流量,流量方程,7 椭圆齿轮流量计直接测量基本工作原理 “一碗一碗”计量,特点和要求,计量精度高,一般可达0.20.5级,有的甚至能达到0.1级安装直管段对计量精度影响不大,量程比一般为10:1一般只适用于10150mm的中小口径。容积式流量计对被测流体的粘度变化不敏感,特别适合于测量高粘度的流体(例如重油、树脂等)甚至糊状物的流量,
21、但要求被测介质干净,不含固体颗粒,所以一般情况下,流量计前要装过滤器。由于受零件变形的影响,容积式流量计一般不宜在高温或低温下使用。,特点和要求 计量精度高,一般可达0.20.5级,有的甚至能,8 其它科里奥利力质量流量计,基本工作原理 (实验),将充水软管(水不流动)两端悬挂,使其中段下垂成U形,静止时,U形的两管处于同一平面,并垂直于地面,左右摆时,两管同时弯曲,仍然保持在同一曲面,若将软管与水源相接,使水由一端流入,从另一端流出(如图b和c)。当U形管受外力作用向右左摆动时,它将发生扭曲。扭曲的方向总是出水侧的摆动要早于人水侧;,随着质量流量的增加,这种现象变得更加明显,出水侧摆动相位超
22、前于入水侧更多。,8 其它科里奥利力质量流量计基本工作原理将充水软管(水不,利用科氏力构成的质量流量计有直管、弯管、单管、双管等多种形式双弯管型是最常见它由两根金属U形管组成,其端部连通并与被测管路相连。这样流体可以同时在两个U形管内流动在两管的中间A、B、C三处各装有一组压电换能器换能器A在外加交变电压作用下产生交变力,使两根U形管彼此一开一合地振动,相当于两根软管按相反方向不断摆动换能器B和C用来检测两管的振动情况由于B处于进口侧,C处于出口侧,则根据出口侧振动相位超前于进口侧的规律,C输出的交变信号的相位将超前于B某个相位此相位差的大小与质量流量成正比,科里奥利力质量流量计,特点和要求,
23、科氏力质量流量计的测量精度较高,主要用于粘度和密度相对较大的单相和混相流体的流量测量由于结构等原因,这种流量计适用于中小尺寸的管道的流量检测。,利用科氏力构成的质量流量计有直管、弯管、单管、双管等多种形式,物位测量,概述 差压式物位仪表 浮力式物位仪表 电容式物位仪表 辐射式物位仪表, ,物位测量概述 ,1 概述,几个概念,测量液位的仪表叫液位计,测量料位的仪表叫料位计测量两种密度不同液体介质的分界面的仪表叫界面计在物位检测中,有时需要对物位进行连续检测,有时只需要测量物位是否达到某一特定位置,用于定点物位测量的仪表称为物位开关,1 概述 几个概念测量液位的仪表叫液位计,测量料位的仪表叫料,检
24、测方法分类,直读式物位仪表:玻璃管液位计、玻璃板液位计等。差压式物位仪表:利用液柱或物料堆积对某定点产生压力的原理浮力式物位仪表:利用浮子高度或浮力随液位高度而变化的原理。电磁式物位仪表:使物位的变化转换为一些电量的变化,如电容核辐射物位仪表:利用射线透过物料时其强度随物质层的厚度而变化的原理声波式物位仪表:由于物位的变化引起声阻抗的变化、声波的遮断和声波反射距离的不同。光学式物位仪表:利用物位对光波的遮断和反射原理工作,检测方法分类直读式物位仪表:玻璃管液位计、玻璃板液位计等。,2 差压式液位计,基本工作原理,P=gH,零点迁移,P=1gH,P=1gH -2g(h2-h1),P=1gH +1
25、gh1,零点迁移的目的:使H0时,变送器输出为Iomin(如4mA),无迁移,负迁移,迁移量:,-2g(h2-h1),正迁移,迁移量:,1gh1,2 差压式液位计 基本工作原理 P=gH 零点迁移 P,例,已知1=1200kg/m3,2=950kg/m3,h1=1m,h2=5m,液位变化范围02.5米,求:变送器的量程和迁移量。,解,Hmax1g=2.5*1200*9.8=29400Pa变送器量程可选为:40kPa当H=0时,-2g(h2-h1)=-4*950*9.8=-37.24 kPa变送器需要进行负迁移,迁移量为37.24 kPa,例 已知1=1200kg/m3,2=950kg/m3,h
26、,结论:差压式液位变送器,事实上就是一个差压变送器,无非液位变送器的输出与液位高度H成线性关系因此,差压式液位变送器的安装与前面所述的差压变送器的安装是完全相同的。为了解决测量具有腐蚀性或含有结晶颗粒以及粘度大、易凝固等液体液位时,引压管线容易出现被腐蚀、被堵塞的问题,应使用在导压管人口处加隔离膜盒的法兰式差压变送器(压力信号的远传装置),分单法兰式及双法兰式两种。,结论:,3 电容式物位计,基本工作原理,由两个同轴圆柱极板组成的电容器,当两极板之间填充介电常数为1的介质时,两极板间的电容量为:,当极板之间一部分介质被介电常数为2的另一种介质填充时,可推导出电容变化量,3 电容式物位计 基本工
27、作原理 dDLDdLH由两个同轴圆柱,特点和要求,电容式物位计可以用于液位的测量,也可以用于料位的测量,但要求介质的介电常数保持稳定。在实际使用过程中,当现场温度、被测液体的浓度、固体介质的湿度或成分等发生变化时,介质的介电常数也会发生变化,应及时对仪表进行调整才能达到预想的测量精度。,说明:电容式液位计一般都是基于差压原理测量的。,特点和要求 电容式物位计可以用于液位的测量,也可以用于料位的,4 核辐射式物位计,基本工作原理,核辐射线(通常为射线)穿过一定厚度的被测介质时,射线的投射强度将随介质厚度的增加而呈指数规律衰减的原理来测量物位的,I0表示进入物料之间的射线强度;表示物料的吸收系数;
28、H为物料的厚度;I为穿过介质后的射线强度。,4 核辐射式物位计 基本工作原理 核辐射线(通常为射线)穿,特点和要求,核辐射式物位计属于非接触式物位测量仪表适用于高温、高压、强腐蚀、剧毒等条件苛刻的场合核射线还能够直接穿透钢板等介质,可用于高温熔融金属液位测量使用时几乎不受温度、压力、电磁场的影响。但由于射线对人体有害,因此射线的剂量应严加控制,且须切实加强安全防护措施,特点和要求 核辐射式物位计属于非接触式物位测量仪表,温度测量,温度检测的主要方法和分类 热电偶及其测温原理 热电阻及其测温原理 温度变送器简介其它温度检测仪表简介 温度检测仪表的选用和安装,温度测量温度检测的主要方法和分类,1
29、温度检测方法和分类,测温方式 测温仪表 测温范围 主要特点 接膨胀式 玻璃液体,2 热电偶及其测温原理,热电效应和热电偶 热电偶中间导体定律 与 热电势的检测 热电偶的等值替代定律 和 补偿导线 标准化热电偶和分度表 热电偶冷端温度的处理 热电偶的结构型式,2 热电偶及其测温原理热电效应和热电偶,热电效应和热电偶,热电效应(热电偶测温的基本原理):任何两种不同的导体或半导体组成的闭合回路,如果将它们的两个接点分别置于温度各为 t 及 t0 的热源中,则在该回路内就会产生热电势。,热电效应和热电偶 热电效应(热电偶测温的基,闭合回路中所产生的热电势由接触电势和温差电势两部分组成:,下标A表示正电
30、极,B表示负电极,由于温差电势比接触电势小很多,常常把它忽略不计,这样热电偶的电势可表示为:,注意:如果下标次序改为eBA,则热电势e前面的符号也应相应改变,即,A BeAB(t0)eAB(t)eA(t,t0)eB,重要结论: 1.如果组成热电偶的两种电极材料相同,则无论热电偶冷、热两端的温度如何,闭合回路中的总热电势为零; 2.如果热电偶冷、热两端的温度相同,则无论两电极材料如何,闭合回路中的总热电势也为零 3.热电偶产生的热电势除了冷、热两端的温度有关之外,还与电极材料有关,也就是说由不同电极材料制成的热电偶在相同的温度下产生的热电势是不同的。,重要结论:,中间导体定律和热电势的测量,热电
31、偶的输出信号是毫伏信号,毫伏信号的大小不仅与冷、热两端的温度有关,还和热电偶的电极材料有关,理论上任何两种不同导体都可以组成热电偶,都会产生热电势。但如何来检测热电偶产生的毫伏信号呢?,因为要测量毫伏信号,必须在热电偶回路中串接毫伏信号的检测仪表,那串接的检测仪表是否会产生额外的热电势,对热电偶回路产生影响呢?答:不会产生影响的。,中间导体定律和热电势的测量热电偶的输出信号是毫伏信号,毫,如果断开冷端,接入第三种导体C,并保持A和C、B和C接触处的温度均为t0,则回路中的总热电势等于各接点处的接触电势之和:,中间导体定律,当tt0时,有,于是可得,根据这一性质,可以在热电偶回路中接入各种仪表和
32、连接导线,只要保证两个接点的温度相同就可以对热电势进行测量而不影响热电偶的输出。,如果断开冷端,接入第三种导体C,并保持A和C、B和C接触处的,中间导体定律,例:求热电偶回路的电势。 已知:eAB(240)=9.747mV,eAB(50)=2.023mV,eAC(50)=3.048mV,eAC(l0)=0.591mV。,解一:E=eAB(240)+eBC(50)+eCA(10), 而 eAB(50)+eBC(50)+eCA(50)=0 E= eAB(240) +eCA(10)- eAB(50)-eCA(50)=10.181 mV,解二:利用中间导体定律 E=eAB(240)+eBA(50)+e
33、AC(50)+eCA(10) = eAB(240) +eCA(10)- eAB(50)-eCA(50)=10.181 mV 。,中间导体定律例:求热电偶回路的电势。解一:E=eAB(240,等值替代定律和补偿导线,如果热电偶AB在某一温度范围内所产生的热电势与热电偶CD在同一温度范围内所产生的热电势相等,即 ,则这两支热电偶在该温度范围内是可以相互替换的,这就是所谓的热电偶等值替代定律。,例 如左图,设 ,证明该回路的总热电势为,等值替代定律和补偿导线如果热电偶AB在某一温度范围内所产,冷端的延伸,把冷端温度延伸到控制室,变为t0,恒定t0比较容易,此时,测得的热电势为,如果选用一组较廉价的材
34、料(C、D),且CD在一定温度范围内所产生的热电势与热电偶AB在同一温度范围内所产生的热电势相等,就可以用CD来替代AB的延伸段。,CD即为热电偶AB的补偿导线,通常CD采用比热电偶电极材料更廉价的两种金属材料做成,一般在0100范围内要求补偿导线要与被补偿的热电偶具有几乎完全相同的热电性质。在选择和使用补偿导线时,要和热电偶的型号相匹配,注意极性不能接错,热电偶与补偿导线连接处的温度一般不能高于100。,DC补偿导线冷端的延伸ttcAB热电偶被测设备生产现场t0毫,标准化热电偶和分度号,从理论上分析,似乎任何两种不同的导体都可以组成热电偶,用来测量温度。但实际情况并非如此,为了保证在工业现场
35、应用可靠,并具有足够的精度,热电偶的电极材料在被测温度范围内应满足: 热电性质稳定、物理化学性能稳定、热电势随温度的变化率要大、热电势与温度尽可能成线性对应关系、具有足够的机械强度、复制性和互换性好等要求,目前在国际上被公认的热电偶材料只有几种。 ,附录中列出了几种常用的标准热电偶分度表。根据标准规定,热电偶的分度表是以t00为基准进行分度的。当t0时,所有型号热电偶产生的热电势为0mV;当t0时,热电势为负值。在所有标准化热电偶中,相同温度条件下S型热电偶产生的热电势最小,E型最大。如果把各型号热电偶的热电势和温度制成曲线,可以看出二者呈一定的非线性关系。即:,标准化热电偶和分度号从理论上分
36、析,似乎任何两种不同的导体,例 用K型热电偶来测量温度,在冷端温度为t025时,测得热电势为22.9mV,求被测介质的实际温度。,解1: 根据题意有,由K型热电偶的分度表查出,因此有,反查分度表有,例 用K型热电偶来测量温度,在冷端温度为t025时,测得,热电偶冷端温度的处理,中间导体定律,拆开冷端,串入“毫伏计”,可以测量热电势,而不影响总的热电势,等值替代定律,利用补偿导线来延伸冷端,把热电偶的冷端从温度较高和不稳定的现场延伸到温度较低和比较稳定的操作室内,由于操作室内的温度往往高于0,而且也是不恒定的(即使有空调也是不恒定的),这时,热电偶产生的热电势必然会随冷端温度的变化而变。因此,在
37、应用热电偶时,只有把冷端温度保持为0,或者进行必要的修正和处理才能得出准确的测量结果,对热电偶冷端温度的处理称为冷端温度补偿。,热电偶冷端温度的处理中间导体定律拆开冷端,串入“毫伏计”,目前,热电偶冷端温度主要有以下几种处理方法:冰浴法校正仪表零点法计算修正法电桥补偿法补偿热电偶法,目前,热电偶冷端温度主要有以下几种处理方法:,冰浴法把热电偶的冷端放入恒温装置中,保持冷端温度为0,多用于实验室,计算修正法这种方法适用于实验室或者临时测温。,电桥补偿法仪表中常用,冰浴法把热电偶的冷端放入恒温装置中,保持冷端温度为0,,电桥补偿法,是仪表中最常用的一种处理方法,它利用不平衡电桥产生的电压来补偿热电
38、偶因冷端温度的变化而引起热电势的变化,如图,电桥由R1、R2、R3(均为锰铜电阻)和RCu(热敏铜电阻)组成。,在设计的冷端温度(例如t00)时,满足R1R2,R3RCu,这时电桥平衡,无电压输出,即Uab=0,回路中的输出电势就是热电偶产生的热电势,当冷端温度由t0变化到t0时,不妨设t0 t0,热电偶输出的热电势减小,但电桥中RCu随温度的上升而增大,于是电桥两端会产生一个不平衡电压Uab(t0 ),此时回路中输出的热电势为:,经过设计,可使电桥的不平衡电压等于因冷端温度变化引起的热电势变化,即,于是实现了冷端温度的自动补偿。实际的补偿电桥一般是按t020设计的,即t020时,补偿电桥平衡
39、无电压输出。,电桥补偿法t+RcuER1R2R3+ ab +是仪表中,热电偶的结构形式,普通型热电偶,普通型热电偶主要由热电极、绝缘管、保护套管和接线盒等主要部分组成。,贵重金属热电极的直径一般为0.30.65mm,普通金属热电极的直径一般为0.53.2mm;热电极的长度由安装条件和插入深入而定,一般为3502000mm。,绝缘管用于防止两根电极短路,保护套管用于保护热电极不受化学腐蚀和机械损伤,材料的选择因工作条件而定,普通型热电偶主要有法兰式和螺纹式两种安装方式,热电偶的结构形式接线盒保护套管绝缘管热电偶安装法兰引线口,铠装型热电偶,铠装型热电偶是由热电极、绝缘材料和金属套管三者经过拉伸加
40、工成型的,金属套管一般为铜、不锈钢、镍基高温合金等,保护套管和热电极之间填充绝缘材料粉末,常用的绝缘材料有氧化镁、氧化铝等。,铠装型热电偶可以做得很细,一般为28mm,在使用中可以随测量需要任意弯曲。,铠装热电偶具有动态响应快、机械强度高、抗震性好、可弯曲等优点,可安装在结构较复杂的装置上,应用广泛。,铠装型热电偶热电极 绝缘材料 金属套管热电极绝缘材料,3 热电阻及其测温原理,热电阻的测温原理工业上常用的金属热电阻 热电阻的信号连接方式 热电阻的结构型式,3 热电阻及其测温原理热电阻的测温原理,热电阻的测温原理,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。
41、因此,只要测出感温热电阻的阻值变化,就可以测量出被测温度。目前,主要有金属热电阻和半导体热敏电阻两类。,金属热电阻:金属热电阻的电阻值和温度一般可以用以下的近似关系式表示:,式中, 为温度t时对应的电阻值 为温度t0(通常t00)时对应的电阻值 为温度系数。,热电阻的测温原理热电阻是基于电阻的热效应进行温度测量的,,半导体热敏电阻:半导体热敏电阻的阻值和温度的关系为:,式中, 为温度t时对应的电阻值 A、B是取决于半导体材料和结构的常数,金属热电阻和半导体热敏电阻的比较:,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有50300左右,大量
42、用于家电和汽车用温度检测和控制。金属热电阻一般适用于测量200500范围内的温度测量,其特点测量准确、稳定性好、性能可靠,在过程控制领域中的应用极其广泛。,半导体热敏电阻:半导体热敏电阻的阻值和温度的关系为: 式中,,工业上常用的金属热电阻,从电阻随温度的变化来看,大部分金属导体都有这种性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求: 尽可能大而且稳定的温度系数、电阻率要大、在使用的温度范围内具有稳定的化学和物理性能、材料的复制性好、电阻值随温度变化要有单值函数关系(最好呈线性关系)。,我国最常用的铂热电阻有R010、R0100和R01000等几种, 它们的分度号分别为Pt10
43、、 Pt100 和 Pt1000;铜热电阻有R050和R0100两种,分度号分别为Cu50和 Cu100其中 Pt100 和 Cu50 的应用更为广泛,工业上常用的金属热电阻 从电阻随温度的变化来看,大部分金,热电阻的信号连接方式,热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。常用的引线方式有三种:,二线制:在热电阻的两端各连接一根导线来引出电阻信号。,但由于连接导线必然存在引线电阻r,r的大小与导线的材质、长度等因素有关,很明显,图中的,因此,这种引线方式只适用于测量精度要求较低的场合。,热电阻的信号连接方式 热电阻是把温度变
44、化转换为电阻值变化,三线制:在热电阻根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,是工业过程中最常用的引线方式。,事实上电桥上R1R2Rt、R3,经过设计可以使两个桥臂上的电流相等,均为I,且I几乎不受Rt的影响,三线制的连接,每根线上同样也存在导线电阻r,此时,UiUAC?,可以起到调零的作用,ER1R2R3三线制:在热电阻根部的一端连接一根引线,另一端,四线制:在热电阻根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流Is,把Rt转换为电压信号Ui,再通过另两根引线把Ui引至二次仪表。可见这种引线方式可以完全消除引线电阻的影响,主要用于高精度的温度检测。
45、,四线制:在热电阻根部两端各连接两根导线的方式称为四线制,其中,4 温度变送器简介,DDZ-III型温度变送器 一体化温度变送器智能式温度变送器,4 温度变送器简介 DDZ-III型温度变送器,DDZIII型温度变送器,分为热电偶温度变送器和热电阻温度变送器两种,热电偶温度变送器:把mV信号转换为标准电流输出,热电阻温度变送器:把信号转换为标准电流输出,最终要求:变送器输出电流Io应与被测温度t成线性对应关系,热电偶温度变送器应主要要解决:冷端温度补偿和线性化处理两个内容,热电偶温度变送器输入热电势毫伏信号,输入回路即是冷端温度自动补偿桥路,其产生的补偿电势与热电势相加后作为测量电势,因此补偿
46、电桥上的参数与热电偶分度号有关,热电偶温度变送器使用时要注意分度号的匹配。线性化处理电路,热电阻温度变送器应主要要解决:克服引线电阻的影响和线性化处理两个内容,采用三线制输入方式。线性化处理电路,DDZIII型温度变送器 分为热电偶温度变送器和热电阻,一体化温度变送器,分为一体化热电偶温度变送器和一体化热电阻温度变送器两种,热电偶温度变送器:把mV信号转换为标准电流输出,热电阻温度变送器:把信号转换为标准电流输出,所谓一体化温度变送器,是指将变送器模块安装在测温元件接线盒或专用接线盒内,变送器模块和测温元件形成一个整体,可直接安装在被测设备上,输出为统一标准信号420mA。这种变送器具有体积小
47、、重量轻、现场安装方便等优点,因而在工业生产中得到广泛应用。,由于一体化温度变送器直接安装在现场,但由于变送器模块内部的集成电路一般情况下工作温度在20+80范围内,超过这一范围,电子器件的性能会发生变化,变送器将不能正常工作,因此在使用中应特别注意变送器模块所处的环境温度。,一体化温度变送器品种较多,其变送器模块大多数以一片专用变送器芯片为主,外接少量元器件构成,常用的变送器芯片有AD693、XTR101、XTR103、IXR100等。下面以AD693构成的一体化温度变送器为例进行介绍。,一体化温度变送器 分为一体化热电偶温度变送器和一体化热电,一体化热电偶温度变送器,一体化热电偶温度变送器
48、I1I2VT1,一体化热电偶温度变送器简图,AD693的输入信号Ui为热电偶所产生的热电势Et与电桥的输出信号UBD之代数和,如果设AD693的转换系数为K,可得变送器输出与输入之间的关系为,结论:变送器的输出电流I0与热电偶的热电势Et成正比关系。RCu阻值随温度而变,合理选择RCu的数值可使RCu随温度变化而引起的I1RCu变化量近似等于热电偶因冷端温度变化所引起的热电势Et的变化值,两者互相抵消。W1的作用是调零,W2的作用是调满(量程),一体化热电偶温度变送器简图AD693的输入信号Ui为热电偶所,一体化热电阻温度变送器,AD693构成的热电阻温度变送器采用三线制接法,与热电偶温度变送
49、器的电路大致相仿,只是原来热电偶冷端温度补偿电阻RCu现用热电阻Rt代替。AD693的输入信号Ui为电桥的输出信号UBD,即,同样可求得热电阻温度变送器的输出与输入之间的关系为,一体化热电阻温度变送器I2I1VT1AD693构成的热电阻温,智能式温度变送器,智能式温度变送器有采用HART协议通信方式,也有采用现场总线通信方式。下面以SMART公司的TT302温度变送器为例进行介绍。TT302温度变送器是一种符合FF通信协议的现场总线智能仪表,它可以与各种热电阻或热电偶配合使用测量温度,具有量程范围宽、精度高、环境温度和振动影响小、抗干扰能力强、重量轻以及安装维护方便等优点。,智能式温度变送器
50、智能式温度变送器有采用HART协议通信,输入板包括多路转换器、信号调理电路、AD转换器和隔离部分,其作用是将输入信号转换为二进制的数字信号,传送给CPU,并实现输入板与主电路板的隔离。,用于热电偶的冷端温度补偿,核心采样、计算(控制)、输出,产生并输出满足FF标准的数字信号,显示,输入板包括多路转换器、信号调理电路、AD转换器和隔离部分,,5 双金属温度计,5 双金属温度计,6 温度检测仪表的选用,工业上常见的温度检测仪表主要有:,双金属温度计热电偶热电阻辐射式温度计等,就地指示,精度不高,在线检测,适用于测量5001800范围的中高温度,适用于测量500以下的中低温度,一般用于2000以上的