基础化学徐春祥主编9分子结构ppt课件.ppt

上传人:牧羊曲112 文档编号:1325641 上传时间:2022-11-09 格式:PPT 页数:97 大小:3.08MB
返回 下载 相关 举报
基础化学徐春祥主编9分子结构ppt课件.ppt_第1页
第1页 / 共97页
基础化学徐春祥主编9分子结构ppt课件.ppt_第2页
第2页 / 共97页
基础化学徐春祥主编9分子结构ppt课件.ppt_第3页
第3页 / 共97页
基础化学徐春祥主编9分子结构ppt课件.ppt_第4页
第4页 / 共97页
基础化学徐春祥主编9分子结构ppt课件.ppt_第5页
第5页 / 共97页
点击查看更多>>
资源描述

《基础化学徐春祥主编9分子结构ppt课件.ppt》由会员分享,可在线阅读,更多相关《基础化学徐春祥主编9分子结构ppt课件.ppt(97页珍藏版)》请在三一办公上搜索。

1、第一节 离子键第二节 共价键的价键理论第三节 轨道杂化理论第四节 价层电子对互斥理论第五节 分子轨道理论简介第六节 分子作用力和氢键,第九章 分子结构,第一节离 子 键,一、离子键理论的基本要点二、晶格能三、影响离子型化合物性质的主要因素,一、离子键理论的基本要点,当电负性较小的活泼金属元素的原子与电负性较大的活泼非金属元素的原子在一定条件下相互接近时,它们都有达到稳定的稀有气体结构的倾向,活泼金属原子失去最外层电子,形成具有稳定电子层结构的带正电荷的阳离子;而活泼非金属原子得到电子,形成具有稳定电子层结构的带负电荷的阴离子。阴、阳离子之间由于静电引力相互吸引,当它们充分接近时,原子核之间及电

2、子之间的排斥作用增大,当阴、阳离子之间吸引作用和排斥作用达到平衡时,系统的能量降到最低,阴、阳离子间形成稳定的化学键。这种通过阴、阳离子间的静电作用而形成的化学键称为离子键 。,由于离子的电荷分布是球形对称的,它在空间各个方向与带相反电荷的离子的静电作用是相同的,并不存在某一方向吸引力更大的问题,因此离子键没有方向性。只要空间条件允许,每一个离子可以吸引尽可能多的带相反电荷的离子,并不受离子本身所带电荷的限制,因此离子键也没有饱和性。当然,这并不意味着一个阴、阳离子周围排列的带相反电荷离子的数目可以是任意的。实际上,在离子晶体中,每一个阴、阳离子中周围排列的带相反电荷离子的数目都是固定的。,离

3、子键主要特征是没有方向性和饱和性。,NaCl 晶体示意图,二、晶格能,标准状态下使单位物质的量离子晶体变为气 态阳离子和气态阴离子时所吸收的能量称为 晶格能,用符号 表示。 晶格能可利用 BornHaber 循环计算得到。现以NaCl为例,可以设想反应分为以下几个步骤进行:,离子键的强度通常用晶格能来度量。在,根据 Hess 定律,NaCl 的晶格能为: 晶格能是衡量离子键强度的标志。晶格能越大,离子键强度就越大,熔化或破坏离子晶体时消耗的能量也就越大,离子晶体的熔点越高,硬度也越大。,三、影响离子型化合物性质的主要因素 离子化合物的性质在很大程度上决定于离子键的强度,而离子键的强度又与离子的

4、半径、离子的电荷和电子的构型密切相关。,由离子键形成的化合物称为离子型化合物。,与原子一样,单个离子也不存在明确界面。所谓离子半径,是根据离子晶体中阴、阳离子的核间距测出的,并假定阴、阳离子的平衡核间距为阴、阳离子的半径之和。离子半径可用X 射线衍射法测定,如果已知一个离子的半径,就可求出另一个离子的半径。 离子半径具有如下规律: (1)同一种元素的阴离子半径大于原子半径而阳离子半径小于原子半径,且正电荷越多,半径越小。例如:,(一)离子半径,;,(2)同一周期电子层结构相同的阳离子的半径,随离子电荷增加而减小;而阴离子的半径随离子电荷增加而增大。例如: (3)同一主族元素的电荷相同的离子的半

5、径,随电子层数增加而增大。例如:,离子半径对离子的强度有较大的影响,一般说来,当离子所带电荷相同时,离子的半径越小,阴、阳离子之间的吸引力就越大,离子键的强度也越大。,离子所带的电荷也是影响离子键强度的重要因素,当离子的半径相近时,离子的电荷越高,对带相反电荷的离子的吸引力越强,离子键的强度就越大,形成的离子型化合物的熔点也越高。,(二)离子的电荷,(1)2 电子构型:最外层电子构型为 1s2,如Li+,Be2+ 等。 (2)8 电子构型: 最外层电子构型为 ns2np6, 如 Na+,Ca+,Al3+ 等。,(三)离子的电子层构型,(3)18 电子构型:最外层电子构型为 ns2 np6nd1

6、0 ,如 Ag+ ,Zn2+ 等 。 (4)182 电子构型:次外层有18 个电子 最外层有2 个电子,电子构型为 ,如 等。 (5)917电子型构:最外层有917个电子,电子构型为 ns2np6nd19,如 等。 离子的电子构型对离子键的强度有一定的 影响,因此对离子化合物的性质也有一定的影响。响。,第二节共价键的价键理论,一、共价键的本质二、价键理论的基本要点三、共价键的类型,1916 年,美国化学家Lewis 提出了经典共价键理论。Lewis 认为:分子中的每个原子都有达到稳定的稀有气体结构的倾向,在非金属原子组成的分子中,原子达到稀有气体稳定结构不是通过电子的得失,而是通过共用一对或几

7、对电子来实现的。这种由共用电子对所形成的化学键称为共价键。 Heitler 和 London 用量子力学处理氢分子形成的过程中,得到氢分子的能量与核间距之间的关系曲线。,一、共价键的本质,如果两个氢原子的电子自旋方式相反。当它们相互接近时,随着核间距减小,系统能量逐渐降低,当核间距减小到平衡距离时,能量降低到最低值;如果两个氢原子的电子自旋方式相同,随着核间距的减小,系统能量逐渐升高。由此可见,电子自旋方式相反的两个氢原子以核间距R0相结合,比两个远离的氢原子能量低,可以形成稳定的分子。而电子自旋相同的两个氢原子接近时,系统能量升高,且比两个远离的氢原子能量高,不能形成稳定的分子。,电子自旋方

8、式相反的两个氢原子互相接近时,两个氢原子的1s轨道发生重叠,两个原子核间形成一个电子出现的概率密度较大的区域,一方面降低了两个原子核间的正电排斥,另一方面增加了两个原子核对核间电子出现的概率密度较大区域的吸引。而电子自旋方式相同的两个氢原子相互接近时,两个原子轨道异号叠加,两核间电子出现的概率密度降低,增大了两个原子核的排斥力,使系统能量升高,不能形成化学键。,二、价键理论的基本要点 价键理论的基本要点: (1)两个原子接近时,自旋方式相反的未成对电子可以配对形成共价键。 (2)一个原子含有几个未成对电子,通常就能与其他原子的几个自旋相反的未成对电子配对形成共价键。也就是说,一个原子所形成的共

9、价键的数目不是任意的,一般受未成对电子数目的限制,这就是共价键的饱和性。,(3)成键的原子轨道重叠越多,两核间电子出现的概率密度就越大,形成的共价键就越牢固。因此,在可能情况下,共价键的形成将沿着原子轨道最大重叠的方向进行,这就是原子轨道最大重叠原理。,三、共价键的类型,(一)键 原子轨道沿键轴(两原子核间联线)方向以 “头碰头” 方式重叠所形成的共价键称为键。形成键时,原子轨道的重叠部分对于键轴呈圆柱形对称,沿键轴方向旋转任意角度,轨道的形状和符号均不改变。,(二)键,原子轨道垂直于键轴以 “肩并肩” 方式重叠所形成的共价化学键称为键。形成键时,原子轨道的重叠部分对等地分布在包括键轴在内的平

10、面上、下两侧,形状相同,符号相反,呈镜面反对称。,从原子轨道重叠程度来看,键的重叠程度要比键的重叠程度小,键的键能要小于键的键能,所以键的稳定性低于键,它是化学反应的积极参与者。 两个原子形成共价单键时,原子轨道总是沿键轴方向达到最大程度的重叠,所以单键都是键;形成共价双键时,有一个键和一个键;形成共价三键时,有一个键和两个键 。,(三)配位键 按共用电子对提供的方式不同,共价键又可分为正常共价键和配位共价键两种类型。由一个原子单独提供共用电子对而形成的共价键称为配位共价键,简称配位键。配位键用箭号“” 表示,箭头方向由提供电子对的原子指向接受电子对的原子。例如:,形成配位键的条件是: (1)

11、提供共用电子对的原子的最外层有孤对电子; (2)接受共用电子对的原子的最外层有可接受孤对电子的空轨道。,(四)离域键 由三个或三个以上原子轨道形成的键称为 离域键,也称大键。离域键用符号 表 示, 表示参与形成离域键的原子数目, 表示 形成离域键的电子数。 形成离域键的条件是: (1)这些原子都在同一个平面上; (2)每一个原子有一个 p 轨道互相平行; (3)p 电子的数目小于 p 轨道数目的 2 倍。,离域键存在于大多数有机共轭分子和某些无机分子中。例如,氯乙烯和二氧化碳分子中存在三原子四电子的离域键 :,第三节轨道杂化理论,一、轨道杂化理论的基本要点二、轨道杂化的类型与分子的空间构型,一

12、、轨道杂化理论的基本要点,原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型的原子轨道重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。,轨道杂化理论的基本要点: (1)只有在形成分子的过程中,能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化,常见杂化方式的有ns-np杂化、ns-np-nd 杂化和(n -1)d-ns-np 杂化。 (2)杂化轨道的成键能力比未杂化的原子轨道的成键能力强,形成的化学键的键能大。这是由于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重

13、叠程度增大,成键能力增强。 (3)杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目。 (4)杂化轨道的空间构型取决于中心原子的杂化类型。,二、轨道杂化的类型和分子空间构型,(一)sp 杂化 由一个ns轨道和一个np轨道参与的杂化称为sp杂化,所形成的轨道称为sp杂化轨道。每一个sp 杂化轨道中含有1/2的p轨道成分,杂化轨道间的夹角为 。,+,+,-,+,-,在形成分子时,Be采用sp杂化。基态Be的外层电子构型为2s2,在 Cl 的影响下,Be的一个2s轨道和一个2p轨道进行sp杂化,形成两个sp 杂化轨道,每个杂化轨道中有一个未成对电子。Be用两个sp杂化轨道分别与两个Cl 含有未成

14、对电子的3p轨道进行重叠,形成了两个键,由于Be的两个 sp 杂化轨道间的夹角是 ,因此所形成的BeCl2 的空间构型为直线形。,(二)sp2 杂化,由一个ns轨道和两个np 轨道参与的杂化称为sp2 杂化,所形成的三个杂化轨道称为sp2 杂化轨道。每个sp2杂化轨道中含有1/3的s轨道和2/3的p轨道成分,杂化轨道间的夹角为120 呈平面正三角形。,,,在形成BF3时,B采用sp2杂化。基态B最外层电子构型是2s22p1,在F的影响下,B的一个2s轨道和两个2p轨道进行sp2杂化,形成三个sp2杂化轨道,每一个sp2杂化轨道中有一个未成对电子。B用三个sp2杂化轨道,分别与三个F含有未成对电

15、子的3p轨道重叠形成三个键。由于B的三个sp2杂化轨道间的夹角为120 所以BF3 空间构型是平面正三角形。,,,,,(三)sp3 杂化,由一个ns轨道和三个 np 轨道参与的杂化称为 sp3 杂化,所形成的四个杂化轨道称为 sp3 杂化轨道。sp3杂化轨道的特点是每个杂化轨道中含有1/4的 s 轨道和 3/4 的 p 轨道成分,杂化轨道间的夹角为 。,在形成CH4时,C采用sp3杂化。基态C最外层电子构型是2s22p2,在H的影响下,C的一个2s轨道和三个2p轨道进行sp3杂化,形成四个sp3杂化轨道,每个sp3杂化轨道中有一个未成对电子。C用四个sp3杂化轨道,分别与四个H的1s轨道重叠形

16、成四个键。由于C的四个sp3 杂化轨道间的夹角为 ,所以 CH4 空间构型为正四面体。,(四)不等性杂化,由原子轨道组合成一组简并杂化轨道的杂化过程称为等性杂化。完全由一组具有未成对电子的原子轨道或空轨道参与的杂化都是等性杂化。 如果杂化后所得到的一组杂化轨道并不完全简并,则称为不等性杂化。有孤对电子参与的杂化都是不等性杂化。 应该指出,等性杂化并不表示形成的共价键等同。例如,CHCl3 为变形四面体,分子中三个 键与 键并不等同,但 C 采取的杂化方式仍是 sp3 等性杂化。,基态N的最外层电子构型为 2s22p3,在H影响下,N 的一个2s轨道和三个2p 轨道进行sp3 不等性杂化,形成四

17、个sp3 杂化轨道。其中三个sp3杂化轨道中各有一个未成对电子,另一个sp3 杂化轨道被孤对电子所占据。 N 用三个各含一个未成对电子的sp3 杂化轨道分别与三个H 的1s 轨道重叠,形成三个 键。由于孤对电子的电子云密集在N 的周围,对三个 键的电子云有比较大的排斥作用,使 键之间的键角被压缩到 ,因此NH3 的空间构型为三角锥形。,NH3 的空间构型,基态O 的最外层电子构型为2s22p4,在 H 的影响下,O 采用sp3 不等性杂化,形成四个sp3 杂化轨道,其中两个杂化轨道中各有一个未成对电子,另外两个杂化轨道分别被两对孤对电子所占据。O 用两个各含有一个未成对电子的sp3杂化轨道分别

18、与两个H 的 1s 轨道重叠,形成两个 键。由于O的两对孤对电子对两个 键的成键电子有更大的排斥作用,使 键之间的键角被压缩到 ,因此 H2O 的空间构型为角型。,的空间构型,s-p 型杂化轨道和分子的空间构型,0 0 0 1 2,第四节 价层电子对互斥理论,一、价层电子对互斥理论的基本要点二、价层电子对互斥理论的应用实例,一、价层电子对互斥理论的基本要点,价层电子对互斥理论的基本要点: (1)分子或离子的空间构型取决于中心原 子的价层电子对数。中心原子的价层电子对是 指键电子对和未参与成键的孤对电子。 (2)中心原子的价层电子对之间尽可能远 离,以使斥力最小,并由此决定了分子的空间 构型。,

19、静电斥力最小的价层电子对的排布方式,(3)价层电子对之间的斥力与价层电子对的类型有关,价层电子对之间静电斥力大小顺序为:,孤对电子-孤对电子 孤对电子-成键电子对 成键电子对-成键电子对,利用价层电子对互斥理论预测分子或离子的空间构型的步骤如下: (1)确定中心原子的价层电子对数: 价层电子对数(中心原子的价电子数 配位原子提供的电子数)/2 (2)根据中心原子的价层电子对数,找出相应的电子对排布,这种排布方式可使电子对之间静电斥力最小。,(3)根据中心原子的价层电子对的排布方式,把配位原子排布在中心原子周围,每一对电子连接一个配位原子,未结合配位原子的电子对就是孤对电子。若中心原子的价电子对

20、全部是成键电子对,则分子或离子的空间构型与中心原子的价层电子对的排布方式相同;若价层电子对中有孤对电子,应根据成键电子对、孤对电子之间的静电斥力的大小,选择静电斥力最小的结构,即为分子或离子的空间构型。,二、价层电子对互斥理论的应用实例,在CH4 中,C 有4个电子,4个H 提供4个电子,C 的价层电子总数为8个,价层电子对为4对 。C 的价层电子对的排布为正四面体,由于价层电子对全部是成键电子对,因此 CH4 的空间构型为正四面体。,(一) CH4 的空间构型,(二) 的空间构型,在 中,Cl 有7个价电子,不提供电子,再加上得到的1个电子,价层电子总数为个,价层电子对为4对。Cl的价层电子

21、对的排布为四面体,四面体的 3 个顶角被3个O占据,余下的一个顶角被孤对电子占据,因此 为三角锥形。,(三) PCl5 的空间构型,在 PCl5 中,P 有5个价电子,5 个Cl分别提供1个电子,中心原子共有5对价层电子对,价层电子对的空间排布方式为三角双锥,由于中心原子的价层电子对全部是成键电子对,因此PCl5 的空间构型为三角双锥形。 利用价层电子对互斥理论,可以预测大多数主族元素的原子所形成的共价化合物分子或离子的空间构型。,中心原子的价层电子对的排布和 ABn 型共价分子的构型,2,3,平面三角形,2 0 AB2,直线形HgCl2,3 0 AB3,2 1 AB2,价,层,电,子,对,数

22、,平面三角形 BF3,角形,PbCl2,布,方式,4,四面体,4 0 AB4,3 1 AB3,2 2 AB2,正四面体 CH4,三角锥形 NH3,角形,H2O,布,布方式,体,5,三角双锥,50 AB5,4 1 AB4,3 2 AB3,2 3 AB2,三角双锥 PCl5,变形四面 SF4,T形 ClF3,直线形,布,布方式,形,6,八面体,60 AB6,51 AB5,42 AB4,正八面体 SF6,四方锥形,IF5,平面正方,第五节分子轨道理论简介,一、分子轨道理论的基本要点二、分子轨道的形成三、同核双原子分子的分子轨道能级图四、分子轨道理论的应用实例,一、分子轨道理论的基本要点,(1) 在分

23、子中,电子不再属于某个原子,也不局限在两个相邻原子之间,而是在整个分子空间区域内运动,分子中每个电子的空间运动状态用波函数 (称为分子轨道)来描述,每一个波函数 都有相对应的能量和形状, 为分子中的电子在空间出现的概率密度。分子轨道与原子轨道的不同之处,主要是分子轨道是多中心(多原子核)的,而原子轨道是一个中心 (单原子核)的。,(2)作为一种近似处理,可以认为分子轨道是由原子轨道线性组合而成的。组合成的分子轨道的数目等于参与组合的原子轨道的数目。两个原子轨道线性组合得到两个分子轨道 和 ,其中一个是成键分子轨道,其能量EI 比两个原子轨道中能量较低的轨道还低;另一个是反键分子轨道,其能量EI

24、I比两个原子轨道中能量较高的轨道还要高。,分子轨道 的能量低于A,B原子轨道的能量,称为成键分子轨道;分子轨道 的能量高于A,B 原子轨道的能量,称为反键分子轨道。,(3)为了有效地组合成分子轨道,参与组合的原子轨道必须满足以下三条原则: 对称性匹配原则:只有对称性相同的原子轨道才能组合成分子轨道。所谓对称性相同,可以理解为两个原子轨道以两个原子核连线为轴(指定为 x 轴)旋转 时,原子轨道角度分布的正、负号都发生改变或都不发生改变。,原子轨道对称性示意图, 能量相近原则:只有能量接近的两个对称性匹配的原子轨道才能有效地组合成分子轨道而且原子轨道的能量越接近,组合成的分子轨道越有效。 轨道最大

25、重叠原则:能量相近、对称性匹配的两个原子轨道线性组合分子轨道时,应尽可能使原子轨道重叠程度最大,以使成键分子轨道的能量尽可能降低。,,,(4)电子在分子轨道上的排布,遵循能量最低原理、Pauli 不相容原理和 Hund 规则。 (5)分子中共价键的强度用键级来度量,键级的定义为: 键级=(成键电子数反键电子数)2一般来说,键级越大,原子间形成的共价键就越牢固,分子就越稳定。,二、分子轨道的形成,根据分子轨道的对称性不同,可以将分子轨道分为分子轨道和分子轨道。两个原子轨道沿着连接两个核轴线(x 轴)以 “头碰头” 方式组合成的分子轨道称为分子轨道;两个原子轨道垂直于轴线以 “肩并肩” 方式组合成

26、的分子轨道称为分子轨道。,(一)s 原子轨道的组合,两个原子的 ns 轨道沿连接两个原子核的轴线进行线性组合,可得到两个分子轨道。,分布在分子轨道上的电子称为电子,分布在成键分子轨道上的电子称为成键电子,而分布在反键分子轨道上的电子称为反键电子。成键电子使分子的稳定性增大,而反键电子使分子的稳定性降低。由电子的成键作用构成的共价键称为键,由一个成键电子构成的共价键称为单电子键,由一对成键电子构成的共价键称为双电子键(简称键),由一对成键电子和一个反键电子构成的共价键称为三电子键。一对成键电子和一对反键电子不能形成共价键。,(二) p 原子轨道的组合,两个原子的 npx 轨道沿连接两个原子核的轴

27、线(x 轴)以 “头碰头” 方式进行线性组合,可以得两个分子轨道。,当选定键轴为 x 轴时,两个原子的 npy 轨道或 npz 轨道垂直于键轴以“肩并肩”方式组合成两个分子轨道。,分布在分子轨道上的电子称为电子,由电子成键作用构成的共价键称为键。由一个成键电子构成的共价键称为单电子键,由一对成键电子构成的共价键称为双电子键(简称键),由一对成键电子和一个反键电子构成的共价键称为三电子键。一个成键电子和一对反键电子不能形成共价键。,三、同核双原子分子的分子轨道能级图,同核双原子的分子轨道能量的高低由参与组合的原子轨道的能量高低及重叠程度大小两个因素决定。从原子轨道的能量考虑,1s 轨道的能量低于

28、 2s,多电子原子的2s轨道的能量低于2p。从原子轨道重叠程度考虑,在成键的核间距下,两个 2s 轨道或两个 2px 轨道之间的重叠程度比两个2py 或两个 2pz轨道之间的重叠程度大,即键的重叠程度比键的重叠程度大。因此,成键轨道和反键轨道间的能量差比成键轨道和反键轨道间的能量差小。,只有一个电子,其电子排布为 ,形成一个单电子键。 的键级为 0.5,所形成的单电子键的键能较小,故 易解离。由于 中有1 个未成对电子,因此具有顺磁性。,四、分子轨道理论的应用实例,(一) 的结构,有 3 个电子,其电子排布为 ,形成了一个三电子键。 的键级为 ,所形成的三电子键的键能较小,故 易解离。由于 中

29、有1个未成对电子,因此具有顺磁性。,(二) 的结构,(三) N2 的结构 N2共有14 个电子,其电子排布为 其中 四对电子对成键 的贡献较小,对成键有贡献的主要是 和 三对电子,形成两个键和一个,和,和,及,键,键级为 。N2 中没有未成对电子,为反磁性物质。,O2 共有个电子,其电子排布为 对成键有贡献的,,,是 。,的键级为(10-6)/2=2,其结构可表示为:,(四) O2 的结构,其中, 形成一个键,,各形成一个三电子键。O2,O,O,.,.,.,.,.,.,第六节 分子间作用力和氢键,一、分子的极性二、分子间作用力三、氢键,一、分子的极性,分子中都含有带正电荷的原子核和带负电荷的电

30、子,由于原子核所带正电荷与电子所带负电荷相等,因此分子是电中性的。设想分子中有一个“正电荷中心”和一个“负电荷中心”,如果分子的正、负电荷中心重合,则为非极性分子;如果正、负电荷的中心不重合,则为极性分子。,双原子分子的极性与化学键的极性是一致的,如果化学键有极性,分子为极性分子;反之,如果化学键没有极性,则分子为非极性分子。但在多原子分子中,分子的极性不仅与化学键的极性有关,还与分子的空间构型有关。如果分子中化学键是极性键,但分子的空间构型是完全对称的,则正、负电荷中心重合,为非极性分子;如果分子的中化学键为极性键,但分子的空间构型不对称,则正、负电荷中心不重合,为极性分子。,分子的极性的大

31、小常用分子电偶极矩来衡量。分子电偶极矩等于正电荷中心 (或负电荷中心) 的电量q 与正、负电荷中心间的距离d 的乘积: 分子电偶极矩越大,分子的极性就越大;分子电偶极矩越小,分子的极性就越小;分子电偶极矩为零的分子是非极性分子。,一些分子的分子电偶极矩与分子空间构型,分子,分子,分子空,间构型,分子空,间构型,三角形,二、分子间作用力,分子中的电子和原子核都在不停运动着,在运动过程中它们之间会发生瞬时的相对位移,在一瞬间分子的正、负电荷中心不重合,产生瞬时偶极。当两个非极性分子充分接近时,两个分子的正、负电荷中心同时处于异极相邻的状态而产生吸引作用。这种由非极性分子的瞬时偶极产生的吸引作用称为

32、色散力。虽然瞬时偶极存在时间极短,但是这种情况不断重复,因此色散力始终存在着。,(一) 色散力,由于在极性分子中也会产生瞬时偶极,因此不仅非极性分子之间存在色散力,而且非极性分子与极性分子之间及极性分子之间也存在色散力。,(二) 诱导力,当极性分子与非极性分子充分接近时,在极性分子固有偶极的影响下,非极性分子原来重合的正、负电荷中心发生相对的位移而产生诱导偶极,在极性分子的固有偶极与非极性分子的诱导偶极之间产生静电作用力。这种极性分子固有偶极与非极性分子的诱导偶极产生的作用力称为诱导力。 当极性分子充分接近时,在固有偶极的相互影响下,每个极性分子的正、负电荷中心的距离被拉大,也产生诱导偶极,因

33、此诱导力也存在于极性分子之间。,(三) 取向力,极性分子的正、负电荷中心不重合,分子中存在固有偶极。当极性分子充分接近时,极性分子的固有偶极间同极相斥、异极相吸,在空间的运动循着一定的方向,而处于异极相邻的状态。这种由于极性分子的偶极定向排列产生的静电作用力称为取向力。取向力的本质是静电作用,显然,极性分子的分子电偶极矩越大,取向力就越大。,综上所述,在非极性分子之间,只存在色散力;在极性分子与非极性分子之间,存在色散力和诱导力;在极性分子之间存在色散力、诱导力和取向力。对于大多数分子来说,色散力是主要的;只有当分子的极性很大时,取向力才比较显著;而诱导力通常很小。,三、氢键,当氢原子与电负性

34、大、半径小的 X 原子(X=F,O,N) 以共价键结合后,共用电子对偏向于X 原子,氢原子几乎变成了 “裸核” 。“裸核” 的体积很小,又没有内层电子,不被其他原子的电子所排斥,还能与另一个电负性大、半径小的 Y 原子 (Y= F,O,N) 中的孤对电子产生静电吸引作用。这种产生在氢原子与电负性大的元素原子的孤对电子之间的静电吸引称为氢键。,氢键具有方向性和饱和性。氢键的方向性是指形成氢键 时,X,H,Y 原子尽可能在同一直线上,这样可使 X 原子与 Y 原子之间距离最远,两原子间的斥力最小。但形成分子内氢键时,由于结构的限制,X,H,Y 往往不能在同一直线上。氢键的饱和性是指一个 分子只能与

35、一个 Y 原子形成氢键,当 分子与一个Y 原子形成氢键 后,如果再有一个 Y 原子接近时,则这个原子受到 上的 X,Y 原子的排斥力远大于 H 原子对它的吸引力,使 中的 H 原子不可能再与第二个 Y 原子形成第二个氢键 。,水分子间的氢键,氢键可分为分子间氢键和分子内氢键两种类型。一个分子的 键与另一个分子中的 原子形成的氢键称为分子间氢键; 一个分子的键与该分子内的Y原子形成的氢键称为分子内氢键。,氢键通常用 表示,其中X 和Y 代表 F,O,N 等电负性大、半径小的非金属元素的原子; 代表氢键。,Y,形成分子间氢键时,使分子之间产生了较大的吸引力,因此化合物的熔点、沸点升高。如果溶质分子与溶剂分子之间形成氢键,将使溶质与溶剂分子之间的结合力增强,导致溶质的溶解度增大。而形成分子内氢键时,常会使化合物的熔点、沸点降低。若溶质分子生成分子内氢键,则在极性溶剂中的溶解度减小,而在非极性溶剂中的溶解度增大。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号