数学归纳法证明不等式ppt课件.ppt

上传人:小飞机 文档编号:1340072 上传时间:2022-11-11 格式:PPT 页数:33 大小:954KB
返回 下载 相关 举报
数学归纳法证明不等式ppt课件.ppt_第1页
第1页 / 共33页
数学归纳法证明不等式ppt课件.ppt_第2页
第2页 / 共33页
数学归纳法证明不等式ppt课件.ppt_第3页
第3页 / 共33页
数学归纳法证明不等式ppt课件.ppt_第4页
第4页 / 共33页
数学归纳法证明不等式ppt课件.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《数学归纳法证明不等式ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学归纳法证明不等式ppt课件.ppt(33页珍藏版)》请在三一办公上搜索。

1、数学归纳法证明不等式及举例,思考:,阅读课文,思考下列问题:,1.数学归纳法定义:,证明一个与正整数n有关的命题,可按下列步骤进行:(归纳奠基)证明当n取 时 命题成立(归纳递推)假设,第一个值n0(n0N*),nk(kn0,kN*)时命题成立,,证明当nk1时命题也成立,2.数学归纳法适用范围,主要用于研究与正整数有关的数学问题。,应用数学归纳法时特别注意:(1)用数学归纳法证明的对象是与 有关的命题(2)在用数学归纳法证明中,两个基本步骤缺一不可,正整数n,分析按照数学归纳法的步骤证明,在由nk到nk1的推证过程中应用了放缩技巧,使问题简单化,这是利用数学归纳法证明不等式的常用技巧之一,证

2、明(1)当n1时,a11(a1)211a2a1,命题显然成立,(2)假设当nk(kN*)时,ak1(a1)2k1能被a2a1整除,则当nk1时,ak2(a1)2k1aak1(a1)2(a1)2k1aak1(a1)2k1(a1)2(a1)2k1a(a1)2k1aak1(a1)2k1(a2a1)(a1)2k1.由归纳假设知,上式能被a2a1整除,故当nk1时命题也成立由(1),(2)知,对一切nN*,命题都成立,例3求证:an1(a1)2n1能被a2a1整除,nN*,aR.,例4平面内有n个圆,其中每两个圆都交于两点,且无三个及以上的圆交于一点,求证:这n个圆将平面分成n2n2(nN*)个区域分析

3、本题关键是弄清第k1个圆与前k个圆的交点个数,以及这些交点又将第k1个圆分成了多少段弧,每一段弧又是怎样影响平面区域的划分的,证明(1)当n1时,1个圆将平面分成2个区域,命题显然成立(2)假设当nk(kN*)时命题成立,即k个圆将平面分成k2k2个区域则当nk1时,第k1个圆交前面k个圆于2k个点,这2k个点将第k1个圆分成2k段弧,每段弧将各自所经过的区域一分为二,于是增加了2k个区域,所以这k1个圆将平面分成k2k22k个区域,即(k1)2(k1)2个区域,故当nk1时,命题也成立由(1)、(2)可知,对一切nN*,命题都成立,例5是否存在常数a,b,c使等式1(n212)2(n222)

4、n(n2n2)an4bn2c对一切正整数n成立?证明你的结论分析先取n1,2,3探求a,b,c的值,然后用数学归纳法证明对一切的nN*,a,b,c所确定的等式都成立,例4、已知x 1,且x0,nN,n2求证:(1+x)n1+nx.,(2)假设n=k时,不等式成立,即 (1+x)k1+kx当n=k+1时,因为x 1 ,所以1+x0,于是左边=(1+x)k+1=(1+x)k(1+x)(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x因为kx20,所以左边右边,即(1+x)k+11+(k+1)x这就是说,原不等式当n=k+1时也成立根据(1)和(2),原不等式对任何不小于2的自

5、然数n都成立.,证明: (1)当n=2时,左(1x)2=1+2x+x2 x0, 1+2x+x21+2x=右 n=1时不等式成立,1用数学归纳法证明12(2n1)(n1)(2n1)时,在验证n1成立时,左边所得的代数式是()A1 B13C123 D1234解析当n1时,2n12113,所以左边为123.故应选C.,练习:,解析当n1时,n34,所以等式左边为1234.,5用数学归纳法证明某个命题时,左边为12342345n(n1)(n2)(n3),从nk到nk1左边需增加的代数式为_解析当nk时,左边12342345k(k1)(k2)(k3)当nk1时,左边12342345k(k1)(k2)(k

6、3)(k1)(k2)(k3)(k4),所以从nk到nk1左式应增加(k1)(k2)(k3)(k4),(2)数学归纳法证明整除问题:,例1、用数学归纳法证明: 当n为正偶数时,xn-yn能被x+y整除.,证:(1)当n=2时,x2-y2=(x+y)(x-y),即能被x+y整除,故命 题成立.,(2)假设当n=2k时,命题成立,即x2k-y2k能被x+y整除.,则当n=2k+2时,有,都能被x+y整除.,故x2k+2-y2k+2能被x+y整除,即当n=2k+2时命题成立.,由(1)、(2)知原命题对一切正偶数均成立.,例2、用数学归纳法证明: 能被8 整除.,证:(1)当n=1时,A1=5+2+1

7、=8,命题显然成立.,(2)假设当n=k时,Ak能被8整除,即 是8的倍数.,那么:,因为Ak是8的倍数,3k-1+1是偶数即4(3k-1+1)也是8的倍数,所以Ak+1也是8的倍数,即当n=k+1时,命题成立.,由(1)、(2)知对一切正整数n, An能被8整除.,例3、求证:x3n-1+x3n-2+1能被x2+x+1整除.,证:(1)当n=1时, x3n-1+x3n-2+1= x2+x+1,从而命题成立.,(2)假设当n=k时命题成立,即x3k-1+x3k-2+1能被 x2+x+1整除,则当n=k+1时,x3(k+1)-1+x3(k+1)-2+1=x3k+2+x3k+1+1,=x3(x3k

8、-1+x3k-2+1)+x3+1= x3(x3k-1+x3k-2+1)+(x+1)(x2+x+1),因为x3k-1+x3k-2+1、x2+x+1都能被x2+x+1整除,所以上式右边能被x2+x+1整除.,即当n=k+1时,命题成立.,根据(1)、(2)知,对一切正整数n,命题成立.,例6、平面内有n (n2)条直线,任何两条都不平行,任何三条不过同一点,问交点的个数 为多少?并证明.,当n=k+1时:第k+1条直线分别与前k条直线各交于一点,共增加k个点,,由1)、2)可知,对一切nN原命题均成立。,证明:1)n=2时:两条直线交点个数为1, 而f(2)= 2(2-1)=1, 命题成立。,k+1条直线交点个数=f(k)+k= k(k-1)+k = k(k-1+2)= k(k+1)= (k+1)(k+1)-1=f(k+1), 即当n=k+1时命题仍成立。,2)假设n=k(kN,k2)时,k条直线交点个数为 f(k)= k(k-1),(3)数学归纳法证明几何问题:,练习1:凸n边形有f(n)条对角线,则凸n+1边形的对角线 的条数f(n+1)=f(n)+_.,n-1,练习2:设有通过一点的k个平面,其中任何三个平面或 三个以上的平面不共有一条直线,这k个平面将 空间分成f(k)个区域,则k+1个平面将空间分成 f(k+1)=f(k)+_个区域.,2k,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号