数学人教版九年级下册相似三角形的模型ppt课件.ppt

上传人:牧羊曲112 文档编号:1346837 上传时间:2022-11-12 格式:PPT 页数:22 大小:852KB
返回 下载 相关 举报
数学人教版九年级下册相似三角形的模型ppt课件.ppt_第1页
第1页 / 共22页
数学人教版九年级下册相似三角形的模型ppt课件.ppt_第2页
第2页 / 共22页
数学人教版九年级下册相似三角形的模型ppt课件.ppt_第3页
第3页 / 共22页
数学人教版九年级下册相似三角形的模型ppt课件.ppt_第4页
第4页 / 共22页
数学人教版九年级下册相似三角形的模型ppt课件.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《数学人教版九年级下册相似三角形的模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学人教版九年级下册相似三角形的模型ppt课件.ppt(22页珍藏版)》请在三一办公上搜索。

1、相似三角形模型 从基本图形到中考题的演变(1),人教版初中数学九年级下册第二十七章复习专题,学习目标,1、掌握相似三角形的基本图形。通过图形的变化,感受到图形之间的联系。 2、能从复杂图形中进行识别基本图形并能利用图形解决问题。,重、难点 在图形中找或补出基本图形,运用基本 图形解决问题。,判定两个三角形相似的方法:,5. 两角对应相等的两个三角形相似。,4.两边对应成比例且夹角相等的两个三角形相似。,3.三边对应成比例的两个三角形相似。,1.定义:三角对应相等,三边对应成比例的两个三角形相似。,2.平行于三角形一边的直线和其他两边 (或两边的延长线)相交,所构成的三角形与原三角形相似.,相似

2、三角形基本图形的归纳:,现在给你一个锐角三形ABC和一条直线MN问题:直线MN与AB、AC边或其延长线相交,所截得三角形与ABC相似,请同学们作出图形,并说明相似的理由。,A,B,C,M,N,第一种作法: 理由: (1)DEBC (2)ADE=B 或AED=C (3)AD:AB=AE:AC 第二种作法: 理由: (1) ADE=C 或AED=B (2)AE:AB=AD:AC,A,B,C,A,D,E,B,C,A型,反A型,第三种作法: 理由: (1)DEBC (2)ADE=B 或AED=C (3)AD:AB=AE:AC 第四种作法: 理由: (1) ADE=C 或AED=B (2)AE:AB=A

3、D:AC,B,C,A,B,C,X型,蝴蝶型,第五种作法: 理由: (1)DEBC (2)ADE=ABC 或AED=ACB (3)AD:AB=AE:AC第六种作法: 理由: (1) ADE=ACB 或AED=ABC (2)AE:AB=AD:AC,A,B,C,A,B,C,D,E,M,N,M,D,E,N,第七种作法: (1)ACD=B(2)ADC=ACB(3)AD:AC=AC:AB,A,B,D,C,M,N,母子型,ADE绕点A,旋转180度,ACB=Rt,CDAB,相似三角形基本图形整理,1.(2016巴中)如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为

4、() A1:2 B1:3 C1:4 D1:1,点击中考,B,2.(2016安徽)如图,ABC中,AD是中线,BC=8,B=DAC,则线段AC的长为() A4 B4 C6 D4,点击中考,B,如图,已知EMAM,交AC于D,CE=DE,求证:2EDDM=ADCD.,除以上方法外,同学们还能想出其它的“补图”的方法吗?,作法1:延长DE到F,使EF=DE,连接CF.,作法2:取AD的中点G,连接MG.,合作探究,(1)点E为BC上任意一点,若 B= C=60, AEF= C,则ABE与 ECF的关系还成立吗?说明理由,(2)点E为BC上任意一点若 B= C= , AEF= C,则ABE 与 ECF

5、的关系还成立吗?,A,B,F,C,E,60,60,60,“M”型相似,也称“三等角型”相似。,问题发现 知识整理,ABE ECF,ADE绕点A,旋转180度,ACB=Rt,CDAB,相似三角形基本图形整理,三直角型,三等角型,E,B,C,D,F,1.已知:D为BC上一点, B=C=EDF=60, BE=6 , CD=3 , CF=4 ,则BD=_.,A,牛刀小试,8,2.如图,已知直线l1l2l3l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则tana=_,E,F,3.如图,在等腰ABC中, BAC=90,AB=AC=1,点D是BC边上的一个动点(不与B、

6、C重合),在AC上取一点E,使ADE=45,(1)求证:ABDDCE,(2)设BD=x,AE=y,求y关于x的函数关系式及自变量x的取值范围,并求出当BD为何值时AE取得最小值,巩固提高,(2)设BD=x,AE=y,求y关于x的函数关系式及自变量x的取值范围,并求出当BD为何值时AE取得最小值,解:ABDDCE,1,如图,在等腰ABC中, BAC=90,AB=AC=1,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=45,构造相似图形间接求,已知相似图形直接求,相似基本图形的运用,方程思想,分类思想,学会从复杂图形中分解出基本图形,整体思想,转化思想,我的收获,善于观察

7、 善于发现 善于总结,达标测评,基本图形1,D,E,H,过D作DHEC交BC延长线于点H,(1)试找出图中的相似三角形?,(2)若AE:AC=1:2,则AC:DH=_;,若ABC的周长为4,则BDH的周长为_.,若ABC的面积为4,则BDH的面积为_.,ADE ABC DBH,2:3,6,9,平行法,B,C,A,(-3,0),(1,0),2.(1)请在x轴上找一点D,使得BDA与BAC相似 (不包含全等),并求出点D的坐标;,(2)在(1)的条件下,如果P、Q分别是BA、BD上 的动点,连结PQ,设BPDQm, 问:是否存在这样的m,使得BPQ与BDA相似? 如存在,请求出m的值;若不存在,请说明理由。,达标测评,O,D,tanABC=,思考题,P,Q,P,Q,有公共角B,“A”型相似,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号