数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt

上传人:牧羊曲112 文档编号:1349760 上传时间:2022-11-12 格式:PPT 页数:28 大小:937.50KB
返回 下载 相关 举报
数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt_第1页
第1页 / 共28页
数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt_第2页
第2页 / 共28页
数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt_第3页
第3页 / 共28页
数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt_第4页
第4页 / 共28页
数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt》由会员分享,可在线阅读,更多相关《数学:14.2勾股定理应用课件ppt(华师大版八年级上).ppt(28页珍藏版)》请在三一办公上搜索。

1、数学:14.2勾股定理应用课件ppt(华师大版八年级上),14.2 勾股定理应用,勾股定理及其数学语言表达式:,直角三角形两直角边a、b的平方和等于斜边c的平方。,C,A,B,在ABC中,C=90.,(1)若b=8,c=10,则a= ;,(2)若a=5,b=10,则c = ;,(3)若a=2,A=30 ,则 b = ;,C,A,B,6,11.2,3.5,(2)、(3)两题结果精确到0.1,如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在

2、花圃内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),3,4,“路”,A,B,C,5,几何画板演示,4,探究1,一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?,2m,D,C,A,B,连结AC,在RtABC中,根据勾股定理,因此,AC= 2.236因为AC_木板的宽,所以木板_ 从门框内通过.,大于,能,如图,盒内长,宽,高分别是30米,24米和18米,盒内可放的棍子最长是多少米?,18,30,

3、24,及时练,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?,A,C,O,B,D,探究,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?,探究2,A,C,O,B,D,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?,探究2,A,C,O,B,D,从题目和图形中,你能得到哪些信息?,A,C,O,B,D,分析:DB=OD-OB,求B

4、D,可以 先求OB,OD. 在RtAOB中,梯子的顶端沿墙下滑0.5m,梯子底端外移_.,在RtAOB中,,在RtCOD中,,ODOB = 2.236 1.658 0.58,0.58 m,如图,池塘边有两点A、B,无法直接测量AB之间的距离,请你运用所学过的知识设计一种方法,来测量AB间的距离。,我来设计,比一比,哪位同学的方法既多又好?,如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,现在测得CB=60m,AC= 20m ,请你求出A、B两点间的距离。(结果保留整数),我来算一算,D,A,B,C,名题鉴赏,E,九章算术:有一个水池,水面是一个边长为10尺的正方形,在水池正中

5、央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,请问这个水的深度与这根芦苇的长度各是多少?,1,如图,要登上8米高的建筑物BC,为了安全需要,需使梯子底端离建筑物距离AB为6米,问至少需要多长的梯子?,8m,B,C,A,6m,解:根据勾股定理得:AC2= 62 + 82 =36+64 =100即:AC=10(-10不合,舍去)答:梯子至少长10米。,例1:如图,求矩形零件上两孔中心A、B的距离.,?,小明的妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么

6、吗?,售货员没搞错,想一想,荧屏对角线大约为74厘米,如图,在RtABC中,BC=24,AC=7,求AB的长.,在RtABC中,根据勾股定理,解:作如图所示,上述解法正确吗?,例2. 在RtABC中,C=90, A、B、C的对边分别为a、b、c,若ab=34,c=15.求a、b.,分析:通过设未知数,根据勾股定理列出方程求 出a、b.,解:设a=3x,b=4x 在RtABC中,C=90, 由勾股定理,得:a2+b2=c2 即:9x2+16x2=225 解得:x2=9 x=3(负值舍去) a=9, b=12.,1、在一直角三角形中三边为a3,b4,则c 。,5或,及时练,2、在RtABC中,C=

7、90, A、B、C的对边分别为a、b、c,若ac=35,b=20.则a=_c=_.3、直角三角形一直角边长为6,斜边为10,则这个三角形的面积为_,斜边上的高为_,思维拓展: 有没有一种直角三角形,已知一边可以求另外两边长呢?,4,1.在RtABC中,C=90 ,A=30 .则BC:AC:AB= .,2.在RtABC中,C=90 , AC=BC.则AC :BC :AB= . 若AB=8则AC= . 又若CDAB于D,则CD= .,1,2,及时练,如图,在ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BDCD,证明:,过A作AEBC于E,E,AB=AC,BE=CE,在Rt ADE中,,AD2=AE2+DE2,在Rt ABE中,,AB2=AE2+BE2, AD2-AB2=(AE2+DE2)-(AE2+BE2),= DE2- BE2,= (DE+BE)( DE- BE),= (DE+CE)( DE- BE),=BDCD,及时练,如图,ACB=ABD=90,CA=CB,DAB=30,AD=8,求AC的长。,解:,ABD=90,DAB=30,BD= AD=4,在RtABD中,根据勾股定理,在RtABC中,,又AD=8,及时练,课时小结,谈谈你这节课的收获有哪些?会用勾股定理解决简单应用题;学会构造直角三角形,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号