《利用置信区间进行假设检验ppt课件.ppt》由会员分享,可在线阅读,更多相关《利用置信区间进行假设检验ppt课件.ppt(101页珍藏版)》请在三一办公上搜索。
1、第五章 假设检验,第一节 假设检验基本原理 第二节 总体均值、比例和方差的假 设检验 第三节 假设检验中的其他问题,第一节 假设检验的基本原理,假设检验的概念假设检验的步骤假设检验中的小概率原理假设检验中的两类错误双侧检验和单侧检验,假设检验的概念与思想,什么是假设?,对总体参数的一种看法总体参数包括总体均值、比例、方差等分析之前必需陈述,什么是假设检验?,概念事先对总体参数或分布形式作出某种假设然后利用样本信息来判断原假设是否成立类型参数假设检验非参数假设检验特点采用逻辑上的反证法依据统计上的小概率原理,假设检验的基本思想,假设检验的过程(提出假设抽取样本作出决策),假设检验的步骤提出原假设
2、和备择假设确定适当的检验统计量规定显著性水平计算检验统计量的值作出统计决策,提出原假设和备择假设, 什么是原假设?(Null Hypothesis)1. 待检验的假设,又称“0假设”2. 如果错误地作出决策会导致一系列后果3. 总是有等号 , 或4. 表示为 H0H0: 某一数值 指定为 = 号,即 或 例如, H0: 3190(克),为什么叫0假设,什么是备择假设?(Alternative Hypothesis)1. 与原假设对立的假设2. 总是有不等号: , 或 3. 表示为 H1H1: 某一数值,或 某一数值例如, H1: 3910(克),或 3910(克),提出原假设和备择假设,什么检
3、验统计量?用于假设检验问题的统计量选择统计量的方法与参数估计相同,需考虑是大样本还是小样本总体方差已知还是未知检验统计量的基本形式为,确定适当的检验统计量,规定显著性水平,什么是显著性水平?1. 是一个概率值2. 原假设为真时,拒绝原假设的概率被称为抽样分布的拒绝域3. 表示为 (alpha)常用的 值有0.01, 0.05, 0.104. 由研究者事先确定,作出统计决策,计算检验的统计量根据给定的显著性水平,查表得出相应的临界值Z或Z/2将检验统计量的值与 水平的临界值进行比较得出接受或拒绝原假设的结论,假设检验中的小概率原理,假设检验中的小概率原理,什么是小概率?1. 在一次试验中,一个几
4、乎不可能发生的事件发生的概率2. 在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设3. 小概率由研究者事先确定,假设检验中的两类错误(决策风险),假设检验中的两类错误,1. 第一类错误(弃真错误)原假设为真时拒绝原假设会产生一系列后果第一类错误的概率为 被称为显著性水平2. 第二类错误(取伪错误)原假设为假时接受原假设第二类错误的概率为(Beta),H0: 无罪,假设检验中的两类错误(决策结果),假设检验就好像一场审判过程,统计检验过程, 错误和 错误的关系,影响 错误的因素,1. 总体参数的真值随着假设的总体参数的减少而增大2. 显著性水平 当 减少时增大3. 总体标准差 当 增大时增
5、大4. 样本容量 n当 n 减少时增大,双侧检验和单侧检验,双侧检验与单侧检验 (假设的形式),双侧检验(原假设与备择假设的确定),双侧检验属于决策中的假设检验。也就是说,不论是拒绝H0还是接受H0,我们都必需采取相应的行动措施例如,某种零件的尺寸,要求其平均长度为10厘米,大于或小于10厘米均属于不合格建立的原假设与备择假设应为 H0: = 10 H1: 10,双侧检验(确定假设的步骤),1. 例如问题为: 检验该企业生产的零件平均长度为4厘米2. 步骤从统计角度陈述问题 ( = 4)从统计角度提出相反的问题 ( 4)必需互斥和穷尽提出原假设 ( = 4)提出备择假设 ( 4)有 符号,提出
6、原假设: H0: = 4提出备择假设: H1: 4,该企业生产的零件平均长度是4厘米吗? (属于决策中的假设),双侧检验(例子),双侧检验(显著性水平与拒绝域 ),双侧检验(显著性水平与拒绝域 ),双侧检验(显著性水平与拒绝域 ),双侧检验(显著性水平与拒绝域 ),单侧检验(原假设与备择假设的确定),检验研究中的假设将所研究的假设作为备择假设H1将认为研究结果是无效的说法或理论作为原假设H0。或者说,把希望(想要)证明的假设作为备择假设先确立备择假设H1,单侧检验(原假设与备择假设的确定),例如,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上属于研究中的假设建立的原假设与备择
7、假设应为 H0: 1500 H1: 1500例如,改进生产工艺后,会使产品的废品率降低到2%以下属于研究中的假设建立的原假设与备择假设应为 H0: 2% H1: 2%,单侧检验(原假设与备择假设的确定),检验某项声明的有效性将所作出的说明(声明)作为原假设对该说明的质疑作为备择假设先确立原假设H0除非我们有证据表明“声明”无效,否则就应认为该“声明”是有效的,单侧检验(原假设与备择假设的确定),例如,某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在10000小时以上除非样本能提供证据表明使用寿命在10000小时以下,否则就应认为厂商的声称是正确的建立的原假设与备择假设应为 H0: 1000
8、0 H1: 10000,提出原假设: H0: 10000选择备择假设: H1: 10000,该批产品的平均使用寿命超过10000小时吗? (属于检验声明的有效性,先提出原假设),单侧检验(例子),提出原假设: H0: 25选择备择假设: H1: : 25,学生中经常上网的人数超过25%吗? (属于研究中的假设,先提出备择假设),单侧检验(例子),单侧检验(显著性水平与拒绝域 ),左侧检验(显著性水平与拒绝域 ),左侧检验(显著性水平与拒绝域 ),右侧检验(显著性水平与拒绝域 ),右侧检验(显著性水平与拒绝域 ),第二节 一个正态总体的参数检验,一. 总体方差已知时的均值检验二. 总体方差未知时
9、的均值检验三. 总体比例的假设检验,一个总体的检验,检验的步骤,陈述原假设 H0 陈述备择假设 H1 选择显著性水平 选择检验统计量 选择n,给出临界值 搜集数据 计算检验统计量 进行统计决策 表述决策结果,总体方差已知时的均值检验(双尾 Z 检验),一个总体的检验,均值的双尾 Z 检验 (2 已知),1. 假定条件总体服从正态分布若不服从正态分布, 可用正态分布来近似(n30)2. 原假设为:H0: =0;备择假设为:H1: 0使用z-统计量,均值的双尾 Z 检验(实例),【例】某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度近似服从正态分布,其总体均值为0=0.081mm,总体标准
10、差为= 0.025 。今换一种新机床进行加工,抽取n=200个零件进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的椭圆度的均值与以前有无显著差异?(0.05),均值的双尾 Z 检验(计算结果),H0: = 0.081H1: 0.081 = 0.05n = 200临界值(s):,检验统计量:,决策:,结论:,拒绝H0,有证据表明新机床加工的零件的椭圆度与以前有显著差异,总体方差已知时的均值检验(单尾 Z 检验),均值的单尾 Z 检验 (2 已知),假定条件总体服从正态分布若不服从正态分布,可以用正态分布来近似 (n30)备择假设有符号使用z-统计量,均值的单尾 Z 检验(提出假设),
11、均值的单尾Z检验 (实例),【例】某批发商欲从生产厂家购进一批灯泡,根据合同规定,灯泡的使用寿命平均不能低于1000小时。已知灯泡使用寿命服从正态分布,标准差为20小时。在总体中随机抽取100只灯泡,测得样本均值为960小时。批发商是否应该购买这批灯泡? (0.05),均值的单尾Z检验 (计算结果),H0: 1000H1: 1000 = 0.05n = 100临界值(s):,检验统计量:,在 = 0.05的水平上拒绝H0,有证据表明这批灯泡的使用寿命低于1000小时,决策:,结论:,均值的单尾Z检验 (实例),【例】根据过去大量资料,某厂生产的灯泡的使用寿命服从正态分布N(1020,1002)
12、。现从最近生产的一批产品中随机抽取16只,测得样本平均寿命为1080小时。试在0.05的显著性水平下判断这批产品的使用寿命是否有显著提高?(0.05),均值的单尾Z检验 (计算结果),H0: 1020H1: 1020 = 0.05n = 16临界值(s):,检验统计量:,在 = 0.05的水平上拒绝H0,有证据表明这批灯泡的使用寿命有显著提高,决策:,结论:,总体方差未知时的均值检验(双尾 t 检验),一个总体的检验,均值的双尾 t 检验(2 未知),1. 假定条件总体为正态分布如果不是正态分布, 只有轻微偏斜和大样本 (n 30)条件下2. 使用t 统计量,均值的双尾 t 检验 (实例),【
13、例】某厂采用自动包装机分装产品,假定每包产品的重量服从正态分布,每包标准重量为1000克。某日随机抽查9包,测得样本平均重量为986克,样本标准差为24克。试问在0.05的显著性水平上,能否认为这天自动包装机工作正常?,均值的双尾 t 检验 (计算结果),H0: = 1000H1: 1000 = 0.05df = 9 - 1 = 8临界值(s):,检验统计量:,在 = 0.05的水平上接受H0,有证据表明这天自动包装机工作正常,决策:,结论:,总体方差未知时的均值检验(单尾 t 检验),均值的单尾 t 检验(实例),【例】一个汽车轮胎制造商声称,某一等级的轮胎的平均寿命在一定的汽车重量和正常行
14、驶条件下大于40000公里,对一个由20个轮胎组成的随机样本作了试验,测得平均值为41000公里,标准差为5000公里。已知轮胎寿命的公里数服从正态分布,我们能否根据这些数据作出结论,该制造商的产品同他所说的标准相符?( = 0.05),均值的单尾 t 检验 (计算结果),H0: 40000H1: 40000 = 0.05df = 20 - 1 = 19临界值(s):,检验统计量:,在 = 0.05的水平上接受H0,有证据表明轮胎使用寿命显著地大于40000公里,决策:,结论:,总体比例的假设检验(Z 检验),适用的数据类型,离散数据,连续数据,数值型数据,数 据,品质数据,一个总体的检验,一
15、个总体比例的 Z 检验,假定条件有两类结果总体服从二项分布可用正态分布来近似比例检验的 z 统计量,P0为假设的总体比例,一个总体比例的 Z 检验 (实例),【例】某研究者估计本市居民家庭的电脑拥有率为30%。现随机抽查了200的家庭,其中68个家庭拥有电脑。试问研究者的估计是否可信? ( = 0.05),一个样本比例的 Z 检验 (结果),H0: p = 0.3H1: p 0.3 = 0.05n = 200临界值(s):,检验统计量:,在 = 0.05的水平上接受H0,有证据表明研究者的估计可信,决策:,结论:,总体方差的检验(2 检验),一个总体的检验,方差的卡方 (2) 检验,1.检验一
16、个总体的方差或标准差2.假设总体近似服从正态分布3.原假设为 H0: 2 = 024.检验统计量,卡方 (2)检验实例,【例】根据长期正常生产的资料可知,某厂所产维尼纶的纤度服从正态分布,其方差为0.0025。现从某日产品中随机抽取20根,测得样本方差为0.0042。试判断该日纤度的波动与平日有无显著差异?(=0.05 ),卡方 (2) 检验 计算结果,H0: 2 = 0.0025H1: 2 0.0025 = 0.05df = 20 - 1 = 19临界值(s):,统计量:,在 = 0.05的水平上接受H0,有证据表明该日纤度的波动比平时没有显著差异,决策:,结论:,第三节 假设检验中的其他问
17、题,用置信区间进行检验利用P - 值进行检验,利用置信区间进行假设检验,利用置信区间进行假设检验(双侧检验),求出双侧检验均值的置信区间,2已知时:,2未知时:,若总体的假设值0在置信区间外,拒绝H0,利用置信区间进行假设检验(左侧检验),求出单边置信下限,若总体的假设值0小于单边置信下限,拒绝H0,利用置信区间进行假设检验(右侧检验),求出单边置信上限,若总体的假设值0大于单边置信上限,拒绝H0,利用置信区间进行假设检验 (例子),【例】一种袋装食品每包的标准重量应为1000克。现从生产的一批产品中随机抽取16袋,测得其平均重量为991克。已知这种产品重量服从标准差为50克的正态分布。试确定
18、这批产品的包装重量是否合格?( = 0.05),属于决策的假设!,香脆蛋卷,利用置信区间进行假设检验(计算结果),H0: = 1000H1: 1000 = 0.05n = 49临界值(s):,置信区间为,决策:,结论:,假设的0 =1000在置信区间内,接受H0,表明这批产品的包装重量合格,利用 P-值进行假设检验,什么是 P 值?(P-Value),是一个概率值如果我们假设原假设为真,P-值是观测到的样本均值不同于(实测值的概率左侧检验时,P-值为曲线上方小于等于检验统计量部分的面积右侧检验时,P-值为曲线上方大于等于检验统计量部分的面积被称为观察到的(或实测的)显著性水平H0 能被拒绝的的
19、最小值,利用 P 值进行决策,单侧检验若p-值 ,不能拒绝 H0若p-值 , 拒绝 H0双侧检验若p-值 /2, 不能拒绝 H0若p-值 /2, 拒绝 H0,双尾 Z 检验 (P-值计算实例),【例】欣欣儿童食品厂生产的盒装儿童食品每盒的标准重量为368克。现从某天生产的一批食品中随机抽取25盒进行检查,测得每盒的平均重量为x = 372.5克。企业规定每盒重量的标准差为15克。确定P - 值。,双尾 Z 检验 (P-值计算结果),双尾 Z 检验 (P-值计算结果),双尾 Z 检验 (P-值计算结果),双尾 Z 检验 (P-值计算结果),双尾 Z 检验 (P-值计算结果),双尾 Z 检验 (P
20、-值计算结果),双尾 Z 检验 (P-值计算结果),单尾 Z 检验 (P-值计算结果),【例】欣欣儿童食品厂生产的某种盒装儿童食品,规定每盒的重量不低于368克。现从某天生产的一批食品中随机抽取25盒进行检查,测得每盒的平均重量为x=372.5克。企业规定每盒重量的标准差为15克。确定P-值。,单尾 Z 检验 (P-值计算结果),样本统计量的Z值,计算的检验统计量为:,双尾 Z 检验 (P-值计算结果),单尾 Z 检验 (P-值计算结果),-值为 P(Z 1.50),样本统计量的Z值,用备择假设找出方向,单尾 Z 检验 (P-值计算结果),-值为 P(Z 1.50),样本统计量的Z值,用备择假设找出方向,从Z分布表:查找1.50,单尾 Z 检验 (P-值计算结果),-值为 P(Z 1.50),样本统计量的Z值,用备择假设找出方向,从Z分布表:查找1.50,0.5000-0.4332 0.0668,单尾 Z 检验 (P-值计算结果),-值为 P(Z 1.50)=.0668,样本统计量的Z值,用备择假设找出方向,从Z分布表:查找1.50,0.5000-0.4332 0.0668,单尾 Z 检验 (P-值计算结果),单尾 Z 检验 (P-值计算结果),检验统计量未在拒绝区域,(p-值 =0 .0668) ( = .05),不能拒绝H0,