《一阶电路和二阶电路的时域分析课件.ppt》由会员分享,可在线阅读,更多相关《一阶电路和二阶电路的时域分析课件.ppt(104页珍藏版)》请在三一办公上搜索。
1、一阶的零输入响应、零状态响应和全响应的概念及求解;,重点,4.一阶电路的阶跃响应及冲激响应概念及求解。,1.动态电路方程的建立及初始条件的确定;,返 回,3.稳态分量、暂态分量的概念及求解;,7.4 一阶电路的全响应,电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。,以RC电路为例,电路微分方程:,1. 全响应,全响应,下 页,上 页,解答为: uC(t) = uC + uC, = RC,返 回,uC (0)=U0,uC (0+)=A+US=U0, A=U0 - US,由初始值定A,下 页,上 页,强制分量(稳态解),自由分量(暂态解),返 回,2. 全响应的两种分解方式,全响
2、应 = 强制分量(稳态解)+自由分量(暂态解),着眼于电路的两种工作状态,物理概念清晰,下 页,上 页,返 回,全响应 = 零状态响应 + 零输入响应,着眼于因果关系,便于叠加计算,下 页,上 页,零输入响应,零状态响应,返 回,下 页,上 页,返 回,例1,t=0 时 ,开关k打开,求t 0后的iL、uL。,解,这是RL电路全响应问题,有:,零输入响应:,零状态响应:,全响应:,下 页,上 页,返 回,或求出稳态分量:,全响应:,代入初值有:,62A,A=4,例2,t=0时 ,开关K闭合,求t 0后的iC、uC及电流源两端的电压。,解,这是RC电路全响应问题,有:,下 页,上 页,稳态分量:
3、,返 回,下 页,上 页,全响应:,返 回,3. 三要素法分析一阶电路,一阶电路的数学模型是一阶线性微分方程:,令 t = 0+,其解答一般形式为:,下 页,上 页,特解,返 回,分析一阶电路问题转为求解电路的三个要素的问题。,用0+等效电路求解,用t的稳态电路求解,下 页,上 页,直流激励时:,注意,返 回,例1,已知:t=0 时合开关,求换路后的uC(t),解,下 页,上 页,返 回,例2,t=0时 ,开关闭合,求t 0后的iL、i1、i2,解,三要素为:,下 页,上 页,三要素公式,返 回,三要素为:,下 页,上 页,0等效电路,返 回,例3,已知:t=0时开关由12,求换路后的uC(t
4、),解,三要素为:,下 页,上 页,返 回,下 页,上 页,例4,已知:t=0时开关闭合,求换路后的电流i(t) 。,解,三要素为:,返 回,下 页,上 页,返 回,已知:电感无初始储能t = 0 时合S1 , t =0.2s时合S2 ,求两次换路后的电感电流i(t)。,0 t 0.2s,解,下 页,上 页,例5,返 回,t 0.2s,下 页,上 页,返 回,(0 t 0.2s),( t 0.2s),下 页,上 页,返 回,7.5 二阶电路的零输入响应,uC(0+)=U0 i(0+)=0,已知:,1. 二阶电路的零输入响应,以电容电压为变量:,电路方程:,以电感电流为变量:,下 页,上 页,返
5、 回,特征方程:,电路方程:,以电容电压为变量时的初始条件:,uC(0+)=U0,i(0+)=0,以电感电流为变量时的初始条件:,i(0+)=0,uC(0+)=U0,下 页,上 页,返 回,2. 零状态响应的三种情况,过阻尼,临界阻尼,欠阻尼,特征根:,下 页,上 页,返 回,下 页,上 页,返 回,U0,设 |P2|P1|,下 页,上 页,0,电容电压,返 回,t=0+ ic=0 , t= ic=0,ic0 t = tm 时ic 最大,tm,ic,下 页,上 页,0,电容和电感电流,返 回,tm,2tm,uL,ic,下 页,上 页,t,0,电感电压,返 回,iC=i 为极值时,即 uL=0
6、时的 tm 计算如下:,由 duL/dt 可确定 uL 为极小时的 t .,下 页,上 页,返 回,能量转换关系,0 t tm uC 减小 ,i 增加。,t tm uC减小 ,i 减小.,下 页,上 页,返 回,uc 的解答形式:,经常写为:,下 页,上 页,共轭复根,返 回,下 页,上 页,,的关系,返 回,t=0 时 uc=U0,uC =0:t = -,2- . n-,下 页,上 页,返 回,iC,uL=0:t = ,+,2+ . n+,ic=0:t =0,2 . n ,为 uc极值点,ic 的极值点为 uL 零点。,下 页,上 页,返 回,能量转换关系:,0 t , t -,- t ,i
7、C,下 页,上 页,返 回,特例:R=0 时,等幅振荡,下 页,上 页,0,返 回,下 页,上 页,相等负实根,返 回,下 页,上 页,返 回,定常数,可推广应用于一般二阶电路,下 页,上 页,小结,返 回,电路如图,t=0 时打开开关。求 uC并画出其变化曲线。,解,(1) uC(0)=25V iL(0)=5A,特征方程为: 50P2+2500P+106=0,例1,(2)开关打开为RLC串联电路,方程为:,下 页,上 页,返 回,(3),下 页,上 页,返 回,7.6 二阶电路的零状态响应和全响应本章不做要求),uC(0)=0 , iL(0)=0,微分方程为:,通解,特解,特解:,特征方程为
8、:,下 页,上 页,例,1. 二阶电路的零状态响应,返 回,uC解答形式为:,下 页,上 页,返 回,求电流 i 的零状态响应。,i1= i 0.5 u1,= i 0.5(2 i)2= 2i 2,由KVL:,整理得:,首先写微分方程,解,下 页,上 页,例,二阶非齐次常微分方程,返 回,特征根为: P1= 2 ,P2 = 6,解答形式为:,第三步求特解 i,由稳态模型有:i = 0.5 u1,u1=2(20.5u1),i=1A,下 页,上 页,第二步求通解,返 回,第四步定常数,由0+电路模型:,下 页,上 页,返 回,2. 二阶电路的全响应,(1) 列微分方程,(2)求特解,解,下 页,上
9、页,例,应用结点法:,返 回,(3)求通解,特征根为: P= -100 j100,(4)定常数,特征方程为:,下 页,上 页,返 回,(5)求iR,或设解答形式为:,定常数,下 页,上 页,返 回,下 页,上 页,返 回,二阶电路含二个独立储能元件,是用二阶常微分方程所描述的电路。,二阶电路的性质取决于特征根,特征根取决于电路结构和参数,与激励和初值无关。,下 页,上 页,小结,返 回,求二阶电路全响应的步骤,(a)列写t 0+电路的微分方程,(b)求通解,(c)求特解,(d)全响应=强制分量+自由分量,上 页,返 回,上 页,7.7 一阶电路的阶跃响应,1. 单位阶跃函数,定义,单位阶跃函数
10、的延迟,下 页,上 页,返 回,t = 0 合闸 i(t) = Is,在电路中模拟开关的动作,t = 0 合闸 u(t) = E,单位阶跃函数的作用,下 页,上 页,返 回,起始一个函数,延迟一个函数,下 页,上 页,返 回,用单位阶跃函数表示复杂的信号,例 1,例 2,下 页,上 页,返 回,例 4,例 3,下 页,上 页,返 回,例 5,已知电压u(t)的波形如图,试画出下列电压的波形。,下 页,上 页,返 回,2. 一阶电路的阶跃响应,激励为单位阶跃函数时,电路中产生的零状态响应。,阶跃响应,下 页,上 页,注意,返 回,下 页,上 页,返 回,激励在 t = t0 时加入,则响应从t
11、=t0开始。,- t,不要写为:,下 页,上 页,注意,返 回,求图示电路中电流 iC(t),例,下 页,上 页,返 回,应用叠加定理,下 页,上 页,阶跃响应为:,返 回,由齐次性和叠加性得实际响应为:,下 页,上 页,返 回,下 页,上 页,分段表示为:,返 回,分段表示为:,下 页,上 页,返 回,7.8* 一阶电路的冲激响应,1. 单位冲激函数,定义,单位脉冲函数的极限,下 页,上 页,返 回,单位冲激函数的延迟,单位冲激函数的性质,冲激函数对时间的积分等于阶跃函数,下 页,上 页,返 回,冲激函数的筛分性,同理,例,f(t)在 t0 处连续,注意,下 页,上 页,返 回,uc不是冲激
12、函数 , 否则KCL不成立,分二个时间段考虑冲激响应,电容充电,方程为,例1,2. 一阶电路的冲激响应,激励为单位冲激函数时,电路中产生的零状态响应。,冲激响应,求单位冲激电流激励下的RC电路的零状态响应。,解,注意,下 页,上 页,返 回,电容中的冲激电流使电容电压发生跃变。,结论,(2) t 0+ 为零输入响应(RC放电),下 页,上 页,返 回,下 页,上 页,返 回,例2,求单位冲激电压激励下的RL电路的零状态响应。,分二个时间段考虑冲激响应,解,iL不是冲激函数 , 否则KVL不成立。,注意,下 页,上 页,返 回,电感上的冲激电压使电感电流发生跃变。,结论,(2) t 0+ RL放
13、电,下 页,上 页,返 回,下 页,上 页,返 回,3. 单位阶跃响应和单位冲激响应关系,单位阶跃响应,单位冲激响应,h(t),s(t),单位冲激, (t),单位阶跃, (t),激励,响应,下 页,上 页,返 回,先求单位阶跃响应:,求:is (t)为单位冲激时电路响应uC(t)和iC (t).,例,解,uC(0+)=0,uC()=R, = RC,iC(0+)=1,iC()=0,再求单位冲激响应,令:,下 页,上 页,返 回,令,下 页,上 页,返 回,冲激响应,阶跃响应,下 页,上 页,返 回,7.9* 卷积积分,1.卷积积分,定义,设函数 f1(t) , f2(t) t 0 均为零,性质,
14、下 页,上 页,返 回,令 = t - d = - d :0 t : t 0,证明,下 页,上 页,2.卷积积分的应用,返 回,将激励 e( t )近似看成一系列具有相同宽度的矩形脉冲的叠加,,下 页,上 页,若,冲激响应,则,物理解释,返 回,下 页,上 页,返 回,下 页,上 页,若单位脉冲函数 p ( t ) 的零状态响应为 h ( t ),第1个矩形脉冲,第k个矩形脉冲,返 回,根据叠加定理,t 时刻观察到的响应应为 0 t 时间内所有激励产生的响应的和,下 页,上 页,返 回,例1,下 页,上 页,先求电路的冲激响应 h(t),解,uC()=0,返 回,再计算 时的响应 uC ( t
15、 ),例2,下 页,上 页,解,返 回,下 页,上 页,由图解过程确定积分上下限,返 回,下 页,上 页,移,卷,积,返 回,1.网络的状态与状态变量,网络状态,指能和激励一道唯一确定网络现时和未来行为的最少量的一组信息。,状态变量,电路的一组独立的动态变量X, X=x1, x2 xnT ,它们在任何时刻的值组成了该时刻的状态,如独立的电容电压(或电荷),电感电流(或磁通链)就是电路的状态变量。,下 页,上 页,7.10* 状态方程,返 回,状态变量法,下 页,上 页,借助于状态变量,建立一组联系状态变量和激励函数的一阶微分方程组,称为状态方程。只要知道状态变量在某一时刻值X(t0),再知道输
16、入激励e(t),就可以确定tt0后电路的全部性状(响应)。,注意,这里讲的为数最少的变量必须是互相独立的。,返 回,已知:,求:,解,e(0)=10V,例,下 页,上 页,返 回,同理可推广至任一时刻t1,由,(1)状态变量和储能元件有关 (2)有几个独立的储能元件,就有几个状态变量 (3)状态变量的选择不唯一。,下 页,上 页,表明,返 回,设 uc、iL 为状态变量,整理得,每一个状态方程中只含有一个状态变量的一阶导数。对简单电路采用直观编写法。,状态方程,下 页,上 页,2. 状态方程的列写,返 回,矩阵形式,联立的一阶微分方程组,左端为状态变量的一阶导数,右端含状态变量和输入量,下 页
17、,上 页,特点,返 回,一般形式,下 页,上 页,返 回,电路的输出方程,代数方程 用状态变量和输入量表示输出量,一般形式,Y=CX+DV,下 页,上 页,特点,电路中某些感兴趣的量与状态变量和输入量之间的关系,返 回,下 页,上 页,例,列出电路的状态方程,解,对结点列出KCL方程,返 回,下 页,上 页,对回路1和回路2列出KVL方程,把以上方程整理成矩阵形式有,返 回,下 页,上 页,若以结点、的电压作为输出,则有,整理并写成矩阵形式有,返 回,1.动态电路微分方程的阶数与电路结构的关系,动态电路微分方程的阶数与电路中所含的独立动态元件的个数相等。,下 页,上 页,7.11* 动态电路时
18、域分析中的几个问题,当一个网络中存在纯电容回路,由KVL可知其中必有一个电容电压可由回路中其它元件的电压求出,此电容电压为非独立的电容电压。,例,返 回,下 页,上 页,当网络中存在纯电感结点,由KCL可知其中必有一个电感电流可由其它元件的电流求出,此电感电流时非独立的。,网络中与独立电压源并联的电容元件,其电压uC由uS决定。,网络中与独立电流源串联的电感元件,其iL由iS决定。,返 回,以上四种请况中非独立的uC和iL不能作为状态变量,不含以上四种情况的网络称为常态网络。状态变量数等于C、L元件总数。含有以上四种情况的网络称为非常态网络,网络的状态变量数小于网络中C、L元件总数,下面着重讨论常态网络。,下 页,上 页,返 回,2.动态电路中初始值的计算,下 页,上 页,对于通常电路,初始值由下面关系确定,在下面情况下,换路后的电路有纯电容构成的回路,或有由电容和独立电压源构成的回路,且回路中各个电容上电压值uC(0-)的代数和不等于该回路中各个电压源初始值的代数和。,返 回,上 页,换路后的电路有纯电感构成的结点(或割集)或有由电感和独立电流源构成的结点(或割集),且结点上各电感的电流值iL(0-)与电流源电流的初始值的代数和不等于零,,在上述两种情况下,求初始值,必须遵循换路前后电路中电荷守恒和磁通链守恒的约束关系,即,或,或,返 回,