《糖基转移酶与糖苷酶ppt课件.ppt》由会员分享,可在线阅读,更多相关《糖基转移酶与糖苷酶ppt课件.ppt(123页珍藏版)》请在三一办公上搜索。
1、第二节糖基转移酶及其应用,主要内容,糖转移酶简介 糖基转移酶在合成中的应用,Glycosyltransferases 应用activated sugar phosphates 作为糖供体,合成 glycosidic linkage ,糖受体通常为 nucleophilic group, usually an alcohol. 生成的糖苷可以为 O-, N-, S-, or C-glycoside,糖转移酶简介,功能:催化糖苷键的合成( O-, N-, S-, or C-glycoside )供体:活化的糖磷酸受体:亲核基团(蛋白、脂、核酸、糖、小分子),通常为-OH,Non-Leloir do
2、nors:,Leloir donors:,糖供体底物,糖基转移酶根据糖供体中是否含有核苷酸分为两类。,Leloir:阿根廷生物化学家,研究核苷酸代谢,1970,诺贝尔化学奖,分为94 家族 (distinct sequence-based families) (CAZy server, http:/rs-mrs.fr/CAZY) 人类拥有约 270多种糖基转移酶序列,属于 33个家族。,Alpha-1,4-葡萄糖转移酶;beta-1,4-半乳糖转移酶;2,3-唾液酸转移酶,糖基转移酶分类,根据氨基酸序列相似性进行分类:,根据蛋白结构相似性进行分类:,根据糖供体和糖苷键连接方式进行分类:,GT-
3、A,GT-B,其他类型,Rossmann-type domains (for nucleotide binding),NDP-binding domain generally contains a conserved DXD amino acid motif,GT-A fold: SpsA from Bacillus subtilus,GT-B fold: beta-glucosyltransferase from bacteriophage T4,Leloir GTs,Transglycosylase from Staphylococcus aureus,Oligosaccharyltran
4、sferase STT3 from Pyrococcus furiosius,Non-Leloir GTs,催化机理,Glycosyltransferases catalyze the transfer of glycosyl groups to a nucleophilic acceptor with either retention or inversion of configuration at the anomeric centre. This allows the classification of glycosyltransferases as either retaining o
5、r inverting enzymes.,鎓,催化机理,Inverting: SN2 nucleophilic attack at the C1 atom,Retaining: double displacement mechanism,糖基转移酶辅因子,Many, but not all, glycosyltransferases utilize divalent metal ion cofactors such as Mn2+ and Mg2+. mainly in glycosyltransferases that are diphosphonucleoside-dependent. m
6、etal ion is coordinated to an oxygen of each of the two phosphate groups, as well as to side-chain carboxylates derived from the protein.,糖基转移酶抑制剂,直接抑制糖基转移酶活性,底物类似物;过渡态类似物,alpha-2,6-唾液酸转移酶抑制剂,Beta-1,4-半乳糖转移酶抑制剂,阻断糖供体的合成,N-Glycan 合成过程中,首先要合成:dolichol-pp-N-acetylglucosamine,UDP-GlcANc + dolichol-p - d
7、olichol-pp-GlcNAc,N-acetylglucosamine phosphorotransferase,糖基转移酶在合成中的应用,寡糖的酶法合成 具有生物活性含糖天然产物的酶法合成 生物制药-糖蛋白药物生产策略 生物制药-糖疫苗生产策略,Chemical Synthesis of a-Gal,规模小,过程复杂,立体选择性难,Reaction Catalyzed by a1,3-Galactosyltransferase,碳水化合物的合成,体内糖供体合成途径,糖供体相互转化: GalE: UDP-Gal UDP-Glu GalNAcE: UDP-GalNAc UDP-GlcNAc
8、UGD(UDP-Glc dehydrogenase): UDP-Glc UDP-GlcA UDP-GlcA decarboxylase: UDP-GlcA UDP-Xyl,糖基转移酶介导的寡糖合成,Phosphorylases,GlucosyltransferasesFructosyltransferasesCyclodextrin glucanotransferases,Many,微生物中的糖供体,天然糖苷化合物中的糖一般为 C2, C3, C4 and/or C6 脱氧糖,而且大部分为6-deoxyhexoses family (Rhamnose)原核生物糖转移酶具有糖供体的广泛性 6-d
9、eoxyhexoses 一般通过 TDP-sugars进行底物活化(TDP-Rhamnose),优点: 区域、立体选择性 大量生产,不足: * 糖基转移酶在大量表达方面存在困难 糖供体比较昂贵. 副产物抑制,消除副产物抑制(碱性磷酸酶)原位产生糖供体 合成廉价的糖供体类似物.,针对以上不足解决策略,糖基转移酶在工业应用中优势与弱点,可作为LgtC底物,碱性磷酸酶,酶法再生糖供体策略 UDP-sugar (A) and CMP-sugar (B),糖供体的合成,糖供体的合成,糖供体的合成,糖基转移酶在寡糖合成中的应用,(一)具有生物活性寡糖的酶法合成,Biomedical use of a-Ga
10、l,soluble a-Gal antagonist to anti-Gal a-Gal conjugates in immunotherapy against bacteria, virus, and cancer cells.,人工合成的必要性,a1,3GalT 催化合成 a-Gal Epitopes 及其衍生物,O,O,O,O,O,O,O,UDP-Gal4-epimerase,UDP,UDP-Gal100mg/$416,UDP-Glc5g/$529.5,EC 5.1.3.2,Fang J, Chen X, Wang PG, et al.: J. Org. Chem. 1999, 64,
11、4089-4094.,通过原位再生合成 a-Gal 五糖,Fang J, Li J, Chen X, Wang PG, et al: J. Am. Chem. Soc. 1998, 120, 6635-6638.,其他生物活性寡糖的合成(应用),In Human milk,g,e,n,e,H,O,O,H,O,H,O,O,H,O,H,O,O,H,O,O,H,O,O,H,O,H,O,O,H,O,H,O,H,O,A,c,H,N,O,H,a,2,3,t,r,a,n,s,i,a,l,i,d,a,s,e,(,e,),L,S,T,D,O,H,O,A,c,H,N,H,O,O,H,H,O,H,O,2,C,O,H
12、,(Without the B subunits, the A subunit has no way of attaching to or entering the cell, and thus no way to exert its toxic effect.),Stx is an AB5 subunit toxin. The pentamer of (small) B subunits binding to its receptor glycosphingolipid(GSL), globotriaosyl ceramide(Gb3) in glomerular endothelial c
13、ell membranes, initiates A subunit-mediated cell death leading to HUS(hemolytic uremic syndrome ), but induction of inflammatory pathways is also key. Gb3 is heterogenous in its lipid structure and membrane organization, such that different Gb3 formats are differentially recognized by Stx family mem
14、bers, particularly Stx2, which is more frequently associated with clinical disease.,血型相关抗原酶法合成,Fluorescently labeled sLex conj,sLex在转移性结肠癌高表达,二价肿瘤抗原酶法合成,(用于检测肿瘤位置),糖基转移酶应用,乳腺癌、前列腺癌上高表达Globo-H,P-凝集素 配体,防治黑色素瘤,寡糖的合成常常需要多种糖基转移酶 为了增加产量还有用其他一些酶 分步合成费时费力,?,一锅多酶法- Super beads - Super bug,J. Am. Chem. Soc.
15、1995, 117, 5869-5870,一锅多酶法合成透明质酸 (hyaluronic acid),E1, hyaluronic acid synthase; E2, UDP-Glc dehydrogenase; E3, UDP-Glc pyrophosphorylase; E4, UDP-GlcNAc pyrophosphorylase; E5, pyruvate kinase; E6, lactate dehydrogenase; E7, inorganic pyrophosphatase,sialyl Lewis X 酶法大量合成,E1: a1,3-fucosyltransferase
16、;E2: pyruvate kinase;E3: GDP-mannose pyrophosphorylaseE4: GDP-4-keto-5-deoxymannose 3,5-epimerase/GDP-4-keto-6-galactose reductase; E5: glucose dehydrogenase; E6: hexokinase; E7: phosphomannomutase;,E8: a2,3-sialyltransferase,激酶,歧化酶,Superbead,GalU,GalT,GalK,PyKF,Recombinant E. coli stratins overexpr
17、essingGalK, GalT, GalU or PykF,Chen X, Fang J, Wang PG, et al.: J. Am. Chem. Soc. 2001, 123, 2081-2082.,Beads with:GalKGalTGalUPykF,Peristaltic pumpfor circulation,Reservoir with:a1,3GalTLacOBn 9.6 mMATP 0.96 mMPEP 19.2 mMUDP 0.96 mMGlc-1-P 0.96 mMGal 12 mM MgCl2 10 mMMnCl2 10 mMKCl 100 mM HEPES 100
18、 mM pH 7.5,Liu Z, Zhang J, Chen X, Wang PG: ChemBioChem 2002, 3, 348-355.,Production of UDP-Gal with Superbeads.,Superbead 用于寡糖合成,a Gram scale synthesis, others are 100 mg scales,从多菌种发酵到Super bug,Kyowa Hakkos technology for large-scale production of UDP-Gal and globotriose utilizing metabolically en
19、gineered bacterial cells,Ppa: pyrophosphataseGalU: glucose-1-phosphate uridylyltransferaseGalT: galactose-1-phosphate uridylyltransferaseGalK: galactokinaseLgtC: a1,4-galactosyltransferase,CMP-NeuAc regeneration system by bacterial coupling,Using this approach, sugar nucleotides including UDP-Gal,CM
20、P-Neu5Ac, UDP-GlcNAc and GDP-Fuc have been successfully produced on a large scale.,Superbug technologies for the synthesis of a-Gal,分析合成途径,ATP,ADP,a1,3GalT,Gala1,3Lac,L,a,c,t,o,s,e,UDP-Gal,UDP,PEP,Pyruvate,Gal-1-P,Glc-1-P,UDP-Glc,UTP,PykF,GalU,GalK,GalUT,Galactose,PPi,克隆表达验证相关酶,Clone and express ind
21、ividual enzymes in the biosynthetic pathway of a-Gal (克隆相关酶)Construction an artificial biosynthetic gene cluster and transfer into E. coli host cell.(构建基因簇并转化)Large scale production of a-Gal oligosaccharides using fermented and permeated cells. (发酵生产),pLDR20-aKTUF,rbc,rbc,rbc,rbc,构建多基因表达质粒,检验多基因表达效果
22、,Superbug 整个生产过程,Chen X, Liu Z, Zhang W, Fang J, Andreana P, Wang PG: ChemBioChem. 2002, 3, 47-53.,大规模发酵产量,Superbug-1,a1,3GalT,Gala1,3Galb1,4Glc,Galb1,4Glc,UDP-Gal,UDP,PEP,Pyruvate,Gal-1-P,Glc-1-P,UDP-Glc,UTP,PykF,GalU,GalK,GalT,Galactose,Lactose,Glycolyticpathway,Glucose,ATP,ADP,Glucose,Pyruvate,Py
23、kF,PEP,Glycolytic pathway,PPi,NM522,添加三种原料:glucose, galactose, lactose,PpK: polyphosphate kinase,Superbug-2,添加三种原料:多聚磷酸, galactose, lactose,Chen X, Zhang J, Kowal P, Andreana P, Wang PG: J. Am. Chem. Soc. 2001, 123, 8866-8867.,SusA: sucrose synthaseGalE: UDP-Gal 4-epimerase,添加两种原料:sucrose, lactose,S
24、uperbug-3,每次进步只有一点点,积累多了才会实现自己的目标。,二具有生物活性的含糖天然产物及其酶法合成,含糖天然产物,含糖天然产物,诺加霉素,阿克拉霉素(安乐霉素);蒽环类抗癌药,它能嵌入癌细胞的DNA上,抑制核酸的合成,特别是RNA的合成,为周期非特异性药物,在G1晚期和S晚期阻断细胞周期。,daunorubicin n. 微道诺霉素;红比霉素;正定霉素;柔毛霉素(用作抗肿瘤药),含糖天然产物酶法合成,The glycosyltransferase UrdGT2 establishes both C and O glycosidic bonds,天然抗生素竹桃霉素(landomyci
25、n)抗菌性与红霉素类似,含糖天然产物酶法合成,含糖天然产物酶法合成,含糖天然产物酶法合成,抗菌黄酮苷化合物,抗肿瘤黄酮苷化合物,降血脂黄酮苷化合物,研究表明,对于某些黄酮药物,糖的存在与否会对药效影响很大。例如: diosmin,gossipyn和rutin对于中枢神经系统有明显的镇静作用,但相应的苷元没有类似作用。桔皮素(tangeratin)是一种非常有效的抗肿瘤细胞增生的药物,体外研究表明包括桔皮素在内的三种黄酮类药物它们的糖苷型比苷元型抗肿瘤活性更高。在对乳腺腺癌细胞抑制研究中,发现柚皮苷、芦丁、芹菜素、山奈酚、白杨素的抑制活性逐渐减弱,含有糖配体的糖苷类物质活性比其他的要高些。,Eu
26、ropean journal of pharmacology, 2006,539(3): 168-176,A comparison of the structures among these compounds indicates the following elements are essential to the potential acceptors of UGT78D1: 1) the 3-hydroxyl group, 2) the double bond in the ring C, 3) the 4-hydroxyl group .,Guangxiang Ren, Lianwen
27、 Zhang, Glycoconj J (2012) 29:425432,酶(UGT78D1)的底物选择性,阿糖胞苷,急性白血病,糖基部分在抑制核酸代谢物与酶的结合反应中起重要作用,从而增强了其抗肿瘤效应。 烯二炔类抗肿瘤抗生素通过糖基部分与DNA 结合,使药物分子嵌入DNA 双螺旋的小沟中(特别是TCCT位点)。 蒽环类抗生素,环A 和氨基糖部分在决定药物与DNA的选择性结合中起关键作用。该类药物与DNA作用形成复合物的稳定性主要决定于药物的糖环与DNA之间的作用。,以DNA为靶点的抗肿瘤药物糖配基具有协助药物生物转运和特异性识别并结合DNA 的作用。,含糖天然产物或药物大量存在 糖分子在药
28、物分子执行其功能时有时具有重要作用 人工添加糖分子存在一定困难,选择合适的药物分子或改造某种功能已知的糖苷药物,设计合成途径,小结如下:,三:糖蛋白药物,正在开发的蛋白质和抗体药物中大约83%是糖蛋白。,预计到 2010年,糖蛋白药品市场可达680亿美元 。,国际生物药品市场占有率分析,蛋白糖基化的作用,Protein folding,Protein targeting/trafficking,Ligand recognition/binding,Biological activity,Stability,Regulates protein half-life,Immunogenicity,g
29、lycocomponent of glycoproteins,美国Amgen公司的EPOGEN(EPO, 红细胞生成素)和Aranesp(最新的红细胞生成素):EPOGEN,包含有165个氨基酸,其序列与天然的内源性红细胞生成素相同,具有相等的生物活性。Aranesp是第二代红细胞生成蛋白,比EPOGEN多两条N-糖链,包含了更多的唾液酸,其体内半衰期比EPOGEN长3倍多,从而显示出更强的生物活性。,目前糖蛋白表达的缺点和不足,非人源化的糖蛋白:糖蛋白的快速清除,改变药代动力学性质,补体激活,提高免疫原性和用药安全问题。,现有人源化的糖蛋白:生产成本高,细胞容易污染,N-糖基化不足,糖基化程
30、度不同(同一批次和不同批次)。,Sethuraman N, Stadheim TA. Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol. 2006. 17(4):341-6.,掺入非天然氨基酸 特定化学反应引入糖基修饰,细胞表达复杂糖修饰蛋白,特定酶切(Endo-H)、酶连(Endo-A/M)引入均一糖链,四:糖疫苗,病原微生物耐药性逐渐变强,需要更安全有效的防治方法 多种微生物表面成分可作为疫苗In principle, various types of cell surface epitopes,
31、 characteristic for the invading organism or related to aberrant growth of cells, can be applied to develop vaccines. 糖合成技术的出现为糖疫苗的研究应用提供了可能,The progress in establishing the structure of carbohydrate immuno-determinants in conjunction with improvements in carbohydrate synthesis has rendered it feasi
32、ble to develop new generations of carbohydrate-based vaccines.,部分已知糖蛋白抗原,糖疫苗结构,Carrier protein:KLH (key hole Limpet hemocyanin)DT (diphtheria toxoids,CRM197)TT (tetanus Toxoids)antigen protein Glycan (起免疫作用的只是糖链的一部分;oligosaccharides- 有机合成或多糖降解获得)CouplingBifunctional spacer molecules (amino, carboxyl
33、 or thiol groups),Glycoconjugate vaccines against bacterial infections,基于细菌荚膜多糖上的片段,如下列病原微生物:,研究内容:糖链长度与疫苗功能;糖链数目与免疫功能,Polysaccharide type-3 related di-,tri-and tetrasaccharride -CRM197 conjugates: S. pneumoniae type 3 infectionoligosaccharide/proteinratios,肺炎球菌奈瑟氏脑膜炎球菌流感嗜血杆菌伤寒沙门氏菌痢疾志贺氏菌B型链球菌肺炎杆菌,偶联
34、多条糖链更有效,病原微生物糖疫苗,抗寄生虫疫苗制备更复杂.Malaria(疟疾), toxoplasmosis( 弓形体病) and leishmanias(利什曼虫). Malaria caused by Plasmodiumfalciparum(疟原虫), 靶点:对应前两者为glycosylphosphatidylinositol anchors(GPIs),偶联于KLH获得疫苗,对疟疾有很好的防治效果。,肿瘤糖疫苗,至今FDA只批准了一个预防肝炎病毒的疫苗,糖相关肿瘤抗原Muc-1NER-2/neuCEAP53STn Globo H,糖苷酶及其应用,Glycoside hydrolase
35、s (Glycosidases) Transglycosylases Lyases phosphorylases,糖链 或 糖缀合物,糖苷键天然水解时,半衰期为470万年;糖苷酶可以提高催化效率10的17次方倍。,糖苷键切割相关酶,糖苷键底物及效率,糖苷酶分类,按水解机理: 保持型&翻转型 按糖苷键位置: 内切酶,外切酶(非还原端外切酶,还原端外切酶),包括近13万条糖苷酶序列,分属130个家族 ( sequence-based families, http:/rs-mrs.fr/CAZY)超过30种糖苷酶的晶体结构已经解析Transglycosidases (transglycosylase
36、s): 在寡糖和多糖之间进行糖基化反应 。,根据序列进行分类,(EC 3.2.1.-),某些保持型糖苷酶(唾液酸转移酶),活性中心可以包含一个酪氨酸,某些保持型糖苷酶的酶促反应中,有邻基参与过程,Myrosinases (芥子苷酶),Lyases(裂解酶),通过消去反应的机制(eg: a-glucan lyases),Phosphorylase & Transglycosidases,A-R+H3PO3-A-H2PO3 + RH“磷解”糖苷键产物:sugar-1-P(retention or inversion)通常为外切酶(如glycogen phosphorylase)),经过糖苷-酶过渡
37、态,糖的羟基亲和进攻合成新的糖苷键 “糖解”糖苷酶(环糊精合酶),Transglycosidases,Phosphorylase,水解机理,都要经历鎓离子过渡态;而且活性中心包含了两个酸性氨基酸(一般为谷氨酸和天冬氨酸),Inverting glycosidase: A single displacement mechanism,Retaining glycosidase: A double displacement mechanism,亲和标记试剂:用于研究特定的活性位点氨基酸残基。2-脱氧-2-氟糖;5-氟糖。机制:通过鎓离子过渡态去稳定化实现。Mechanism-based, time-
38、dependent inhibitors of retaining glycoside hydrolases.,糖苷酶研究工具,Time-dependent covalent inactivators of glycoside hydrolases,bicyclic inactivators of glycoside hydrolases,Non-covalent glycoside hydrolase inhibitors,Nitrogen-containing sugar-shaped heterocycles.,Having greater activity towards invert
39、ing glucoside hydrolases rather than retaining ones,(不可水解的底物类似物),(杂环糖类似物),糖苷酶在合成中的应用,可逆反应为其应用于合成提供了理论基础,热动力学控制(hydrolysis is exothermic process),自身转糖基反应,反应产物与反应温度有关; 缺点:六位碳羟基产生的副反应,保持型/翻转型?,动力学控制 (只适用于应用活化中间体的酶,保持型水解酶),动力学控制:外切酶 (内切酶一般具有更强的转糖基能力),动力学控制:aryl glycosides(芳基) or glycosyl fluorides(氟),通过
40、引入空间位阻提高目标产物产率(从反应产物角度考虑),6-oxo-galactoside,Transition state analog of the enzymatic hydrolysis reaction,(A) Tandem use of galactose oxidase and -galactosidase for the synthesis of LacNAc. (减少副产物的产生),(B) Utilization of an oxazoline transition state analog as the monomer for chitinase-catalyzed polym
41、erization (通过空间位阻影响糖苷键的构型,只能形成beta构型产物),选择糖受体上的4位,而非6位OH,避免形成alpha键,酶的改造:从糖苷酶到糖合成酶,3. Glycosynthases(糖合成酶),Mechanism of retaining glycosidases: formation of a covalent glycosyl-enzyme intermediate is followed by general base-assisted hydrolysis or glycosidic bond formation,Mechanism of glycosynthase
42、s with glutamate catalytic nucleophile substituted by an alanine residue,Mechanism of glycosynthases with glutamate catalytic nucleophile substituted by a serine residue,General base-assisted displacement of fluoride yields a new glycosidic linkage with an inverted configuration,Serine forms a hydro
43、gen bond with anomeric fluorine and stabilizes the glycosylation transition state by neutralization of a developing negative charge on the departing fluoride, resulting in enhanced catalytic efficiency,硫苷键的合成,一般来说,通过动力学控制合成糖苷的酶不能为反转型糖苷酶,但在底物被特殊活化后也可以被应用。,糖苷酶,糖合成酶,突变体转糖苷能力检测,复杂糖链一般修饰于蛋白等生物大分子上,分析糖链组成是需要将糖链切下。,糖苷酶的应用-糖链分析研究工具,N-糖链分析;粘多糖分析,糖苷酶的应用-体外药物筛选,降糖药物筛选(减少糖的吸收来源)(体外筛选模型)特定代谢病药物筛选(修复糖代谢紊乱),糖苷类小分子药物去糖: 有些药物苷元比糖苷具有更强的活性,而自然界大量存在其糖苷化合物形式,需要去糖。医药用品的生产: 医用壳聚糖纤维,糖苷酶的应用-药物生产,下次课: 糖链结合蛋白及肿瘤发生时的糖链变化,