《解排列组合问题的十八种常用策略ppt课件.ppt》由会员分享,可在线阅读,更多相关《解排列组合问题的十八种常用策略ppt课件.ppt(45页珍藏版)》请在三一办公上搜索。
1、排列常见题型及策略,一.特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.,解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?,练习
2、题,二.相邻元素捆绑策略,例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法.,解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列, 同时对相邻元素内部进行自排。,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.,三.不相邻问题插空策略,例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?,解:分两步进行第一步排2个相声和3个独唱共 有 种,,元素相离问题可先把没有位置
3、要求的元素进行排队再把不相邻元素插入中间和两端,某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( ),30,练习题,四.定序问题空位插入策略,例4.7人排队,其中甲乙丙3人顺序一定共有多 少不同的排法,解:,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:,(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 方法,4*5*6*7,练习题,10人身高各不相等,排成前后排,每排5人,
4、要求从左至右身高逐渐增加,共有多少排法?,五.重排问题求幂策略,例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法,1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( ),42,2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法( ),练习题,六.环排问题线排策略,例6. 5人围桌而坐,共有多少种坐法?,解:围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人A并从 此位置把圆形展成直线其余4人共有_ 种排法即,(5-1)!,一般地,n个不同元素作圆形排列,共有(
5、n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有,练习题,6颗颜色不同的钻石,可穿成几种钻石圈,七.多排问题直排策略,例7.8人排成前后两排,每排4人,其中甲乙在 前排,丁在后排,共有多少排法,解:8人排前后两排,相当于8人坐8把椅子,可以 把椅子排成一排.,一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.,八.排列组合混合问题先选后排策略,例8.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法.,解:第一步从5个球中选出2个组成复合元共 有_种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_种方法.,根据分步计数原理装
6、球的方法共有_,解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似,练习题,一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_ 种,192,九.元素相同问题隔板策略,例9.有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板
7、,插入n个元素排成一排的n-1个空隙中,所有分法数为,n个 相同小球放入m(mn)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.,剪截法(隔板法):,2.基本方法,变式: 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有_种.,分析: 问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.,将10个小球串成一串,截为4段有,种截断法,对应放到4个盒子里.,因此,不同的分配方案共有84种 .
8、,编号为1至n的n个小球放入编号为1到 n的n个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.,错位法:,特别当n=2,3,4,5时的错位数各为1,2,9,44.,如: 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有_种.,解: 选取编号相同的两组球和盒子的方法有,种,其余4组球与盒子需错位排列有9种放法.,故所求方法有159135种.,变式:求其中恰有2个小球与盒子的编号相同的概率.,2.基本方法,练习题,10个相同的球装5个盒中,每盒至少一 有多少装法?,2 .x+y+z+w=100求这个方程
9、组的自然数解 的组数,我们班里有53位同学,从中任抽5人,正班长、副班长、团支部书记至少有一人在内的抽法有多少种?,十.正难则反总体淘汰策略,有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.,十一.平均分组问题除法策略,例11. 6本不同的书平均分成3堆,每堆2本共有 多少分法?,解: 分三步取书得 种方法,但这里出现 重复计数的现象,不妨记6本书为ABCDEF 若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则 中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF
10、,AB,CD)共有 种取法 ,而 这些分法仅是(AB,CD,EF)一种分法,故共 有 种分法。,平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 (n为均分的组数)避免重复计数。,1 将13个球队分成3组,一组5个队,其它两组4 个队, 有多少分法?,2.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_,十二.构造模型策略,例12. 马路上有编号为1,2,3,4,5,6,7,8,9的 九只路灯,现要关掉其中的3盏,但不能关 掉相邻的2盏或3盏,也不能关掉两端的2 盏,求满足条件的关灯方法有多少种?,解:把此
11、问题当作一个排队模型在6盏 亮灯的5个空隙中插入3个不亮的灯 有_ 种,一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决,练习题,某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?,120,十三. 合理分类与分步策略,例13.在一次演唱会上共10名演员,其中8人能 能唱歌,5人会跳舞,现要演出一个2人 唱歌2人伴舞的节目,有多少选派方法?,解:,10演员中有5人只会唱歌,2人只会跳舞 3人为全能演员。,本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准*以3个全能演员是否选上跳舞人员为标准*以只会跳
12、舞的2人是否选上跳舞人员为标准都可经得到正确结果,解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。,1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_,34,练习题,2. 3成人2小孩乘船游玩,1号船最多乘3人, 2 号船最多乘2人,3号船只能乘1人,他们任选 2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.,十四.实际操作穷举策略,例14.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5
13、个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法,解:从5个球中取出2个与盒子对号有_种 还剩下3球3盒序号不能对应,,十五.实际操作穷举策略,例15.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法,解:从5个球中取出2个与盒子对号有_种 还剩下3球3盒序号不能对应,,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有2 种,对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画
14、出树状图会收到意想不到的结果,练习题,同一寝室4人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种?,(9),2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则 不同的着色方法有_种,72,十六. 分解与合成策略,例16. 30030能被多少个不同的偶数整除,分析:先把30030分解成质因数的乘积形式 30030=235 7 1113依题 意可知偶因数必先取2,再从其余5个 因数中任取若干个组成乘积,所有 的偶因数为:,例17.正方体的8个顶点可连成多少对异面 直线,解:我们先从8个顶点中任取4个顶点构成四 面体共有_,3,358=1
15、74,分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略,十七.小集团问题先整体局部策略,例17.用1,2,3,4,5组成没有重复数字的五位数 其中恰有两个偶数夹1,在两个奇数之 间,这样的五位数有多少个?,解:把,当作一个小集团与排队共有_种排法,再排小集团内部共有_种排法,由分步计数原理共有_种排法.,小集团排列问题中,先整体后局部,再结合其它策略进行处理。,.计划展出10幅不同的画,其中1幅水彩画,幅油画,幅国画, 排成一
16、行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为_,2. 5男生和女生站成一排照像,男生相邻,女生也相邻的排法有_种,例18、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?,十八.化归策略,变式:如下图所示,有5横8竖构成的方格图,从A到B只能上行或右行共有多少条不同的路线?,解: 如图所示,将一条路经抽象为如下的一个排法(5-1)+(8-1)=11格:,其中必有四个和七个组成!,所以, 四个和七个一个排序就对应一条路经,所以从A到B共有,条不同的路径.,消序法(留空法),也可以看作是1,2,3,4,5,6,7,顺序一定的排
17、列,有种排法.,2.基本方法,小结 本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。,1.解决应用题时,应分析:要完成做一件什么事;这件事怎样做才可以做好;需要分类还是分步.运用分类计数原理和分步计数原理,关键在于两方面,认真分析题意,设计合理的求解程序是求解问题的关键.,2.如果任何一类办法中的任何一种方法都能完成这件事,即类与类之间是相互独立的,即分类完成,则选用分类计数原理;如果完成一件事要经历几个步骤(即几步),且只有当这些步骤都做完,这件事才能完成,即步与步之间是相互依存、相互连续的,即分步完成,则选用分步计数原理.3.排列与组合的本质区别在于排列不仅取而且排,即与顺序有关,而组合只取出一组即可,与顺序无关.,