《勾股定理应用折叠问题和最短路径问题课件.ppt》由会员分享,可在线阅读,更多相关《勾股定理应用折叠问题和最短路径问题课件.ppt(22页珍藏版)》请在三一办公上搜索。
1、,利用勾股定理求解几何体的最短路线长,利用勾股定理求折叠问题,勾股定理习题课,(2)使用前提是直角三角形,(3)分清直角边、斜边,返回,方程思想,直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。,规律,1、在直角三角形ABC中,C=90,,()已知:,求和,()已知,求和,()已知,求和,、直角的两边长为和,求第三边的长度,或6,(4)已知a比b大1,求和,(5)两直角边和是10,三角形面积是9,求c,规律,分类思想,1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。,2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另
2、一种情况。,例2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC,10,17,8,17,10,8,例1、如图,一块直角三角形的纸片,两直角边AC=6,BC=8。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长,A,C,D,B,E,第8题图,x,6,x,8-x,4,6,练习:三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕为CE,求三角形ACE的面积,A,B,C,D,D,C,A,D1,E,13,5,12,5,12-x,5,x,x,8,例1:折叠矩形ABCD的一边AD,点D落在BC边上的点F处
3、,已知AB=8CM,BC=10CM,求 (1) CF ( 2) EC. (3) AE,A,B,C,D,E,F,8,10,10,6,X,8-X,4,8-X,训练:2、如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕。若AB=3,BC=9.点D对应点是G,G,(1)求BE,(2)求AEF面积,(3)求EF长,(4)连接DG,求DFG面积,利用勾股定理求解几何体的最短路线长,例1、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B
4、点,最短线路是多少?,B,A,5,3,1,5,12,一、台阶中的最值问题, AB2=AC2+BC2=169, AB=13.,二、圆柱(锥)中的最值问题,例2、 有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?,A,B,分析:由于老鼠是沿着圆柱的表面爬行的,故需把圆柱展开成平面图形.根据两点之间线段最短,可以发现A、B分别在圆柱侧面展开图的宽1m处和长24m的中点处,即AB长为最短路线.(如图),练习:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是( ) A.20cm B.10c
5、m C.14cm D.无法确定,B,B,8,O,A,2,蛋糕,A,C,B,周长的一半,圆柱体中的最值问题,三、正方体中的最值问题,例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是( ). (A)3 (B) 5 (C)2 (D)1,分析: 由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).,C,例4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?,分析: 根据题意分析蚂蚁爬行的路线有三种情况(如图 ),由勾股定理可求得图1中AC1爬行的路线最短.,四
6、、长方体中的最值问题,练习:在长30cm、宽50 cm、高40 cm的木箱中,如果在箱内的A处有一只昆虫,它要在箱壁上爬行到B处,至少要爬多远?,C,D,30,50,40,图,30,50,40,C,D,A,.,B,.,A,D,C,B,30,50,40,C,C,D,A,.,B,.,图,30,40,50,C,C,D,A,.,B,.,图,50,A,D,C,B,40,30,30,40,50,C,如图,一条河同一侧的两村庄A、B,其中A、B到河岸最短距离分别为AC=1km,BD=2km,CD=4cm,现欲在河岸上建一个水泵站向A、B两村送水,当建在河岸上何处时,使到A、B两村铺设水管总长度最短,并求出最短距离。,A,P,B,D,E,1,2,4,1,1,4,5,小 结: 把几何体适当展开成平面图形,再利用“两点之间线段最短”,或点到直线“垂线段最短”等性质来解决问题。,