遗传信息的传递与表达ppt课件.ppt

上传人:牧羊曲112 文档编号:1466962 上传时间:2022-11-28 格式:PPT 页数:57 大小:8.74MB
返回 下载 相关 举报
遗传信息的传递与表达ppt课件.ppt_第1页
第1页 / 共57页
遗传信息的传递与表达ppt课件.ppt_第2页
第2页 / 共57页
遗传信息的传递与表达ppt课件.ppt_第3页
第3页 / 共57页
遗传信息的传递与表达ppt课件.ppt_第4页
第4页 / 共57页
遗传信息的传递与表达ppt课件.ppt_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《遗传信息的传递与表达ppt课件.ppt》由会员分享,可在线阅读,更多相关《遗传信息的传递与表达ppt课件.ppt(57页珍藏版)》请在三一办公上搜索。

1、基因信息的传递与表达,DNA是生物体的遗传物质,DNA分子中特定的核苷酸顺序决定着生物体的遗传特征。 基因组:一个生物体的全部基因。某一物件只有一套基因组,除性细胞外,每个细胞包含机体全套基因组。基因:核酸分子上具有一定结构、功能并能编码基因产物(蛋白质、RNA)的一段核苷酸序列。按基因产物不同将基因分为蛋白质基因和RNA基因;按基因功能不同将基因分为结构基因(包括酶、结构蛋白、其它不影响基因表达的蛋白基因)和调节基因(包括阻碍蛋白、激活蛋白的基因)。,分子遗传学的一些重要概念:,2,复制:是以亲代DNA为模板,合成子代DNA。将亲代DNA分子的遗传信息准确传递到子代DNA分子的过程。转录:是

2、以DNA为模板合成RNA。将DNA分子中的遗传信息传递给RNA的过程。翻译:是以mRNA分子上的密码顺序(碱基顺序)为模板合成蛋白质分子多肽链的过程。将mRNA中的遗传信息传递给蛋白质的过程。基因表达:通过转录和翻译,基因的遗传信息在细胞内指导合成各种功能蛋白质的过程。逆转录:是以RNA为模板指导DNA的合成,见于RNA病毒。,3,生物学中心法则:即基因表达规律,遗传信息传递、流向的法则,生物共同遵循的法则。,4,第一节DNA的生物合成,DNA作为遗传物质最基本的特征即自我复制,自我复制是体内合成DNA的主要方式。一、DNA自我复制(一)DNA自我复制的特征1.半保留复制:以亲代DNA解开的两

3、条单链分别为模板,以dATP、dGTP、dCTP、dTTP为原料,按照碱基配对原则(A=T,CG),各自合成新的互补链,成为两个与亲代DNA完全相同的子代DNA。在每个子代DNA分子的两链中,一条是新合成的,另一条是保留亲代的,故称为半保留复制。,5,6,2.半不连续复制:在DNA复制时,一条子代链连续合成,称为前导链(领头链)另一条子代链不连续分段合成,最后才连接成完整的长链,称为滞后链(随从链)合成方向?,7,顺解链方向生成的子链,复制为连续进行,称为领头链。,另一股链复制方向与解链方向相反,不能顺着解链方向连续延长,称为随从链。,领头链连续复制而随从链不连续复制,就是复制的半不连续性。,

4、复制中不连续片段称为冈崎片段,复制叉,8,3.有特定的起始点:具有一些特定的核苷酸序列。原核生物:一个真核生物:多个4.双向复制,9,(二)复制过程及参与物质原料:dNTP(ATP)1.解旋解链(暴露模板)(1)拓扑异构酶:切单链(2)拓扑异构酶:耗ATP切双链(3)解链酶:破坏氢键(4)单链结合蛋白(SSB):结合并固定彼此分离的DNA单链,10,2.引发:合成RNA引物引物酶:在起始位点处合成小段RNA,3-OH可结合dNTP。3.DNA链的延长(1)DNA聚合酶:依赖DNA的DNA聚合酶(DDDP)作用:催化与模板配对的各dNTP间以3 5-磷酸二酯键相连,同时水解掉焦磷酸。分类:,11

5、,12,13,(2)延长过程:前导链在DDDP作用 下连续合成。DDDP和DDDP延长冈崎片段。,14,4.终止:DDDP切除引物,填补空缺连接酶:连接各个冈崎片段拓扑异构酶:促使螺旋结构形成二、DNA损伤与修复 (一)损伤因素:1.物理因素:紫外线、高温、电离辐射等2.化学因素:脱氨剂、烷化剂等3.碱基自发性脱氨基4.生物因素:人体感染逆转录病毒,15,16,(二)损伤后果(基因突变)DNA损伤的类型,17,损伤后果:1.致死2.使生物体丧失某些功能(分子病或先天性代谢障碍);体细胞突变可致肿瘤3.隐性突变4.进化,18,(三)修复方式1.无差错修复(见于子代链损伤)直接修复(光复合作用)切

6、除修复2.有差错修复(重组修复)见于亲代链损伤,19,DNA损伤后的重组修复,20,21,22,三、逆转录合成DN A1、逆转录:在逆转录酶催化下,以RNA为模板合成DNA的过程。2、逆转录酶:作用:催化以RNA为模板合成DNA 催化RNA的水解 催化以DNA为模板合成DNA特点:合成子代链的方向5 3 需要Zn2+参与,以tRNA为引物 无校正作用(易变异)3、意义(1)扩充了生物学中心法则。(2)深化了人们对RNA病毒致癌机理的认识。(3)有助于基因工程的实施。,23,24,第二节RNA的生物合成,一、不对称转录(一)原料:ATP、GTP、CTP、UTP(二)模板:DNA分子双链在转录中只

7、有一条链起模板作用,称为模板链;与其互补的相应链称为编码链。不对称转录:在DNA双链中只转录模板链,不转录编码链的转录方式。,25,(三)RNA聚合酶(又称DNA指导的RNA聚合酶,DDRP)(1)作用:作用及特点类同DDDP。(2)组成及功能:,核心酶:由4个亚基构成,参与起始主要使RNA链延长亚基:辨认起始点,即DNA模板链的启动子,RNA聚合酶原核生物,26,特点:原核生物中的DDRP转录速度慢,无校正作用,可被利福霉素、利福平等药物抑制。真核生物中的DDRP转录速度快,有校正作用。,(四)不对称转录的特点:1.不对称性:2.连续性:不需引物,连续合成3.单向性:534.有特定的起始点和

8、终止点启动子(启动基因):转录起始点上的一段碱基顺序,为DDRP识别及结合位点。结构基因:能转录出mRNA然后翻译成蛋白质的DNA区段。,27,二、转录过程(以原核细胞为例)RNA前体的生成(一)起始: 1.因子识别启动子,-亚基结合启动子,全酶结合于模板链;全酶结合处DNA变构,局部打开约17个碱基对的双链,局部暴露出模板。2.GTP(ATP)配对结合于模板链,全酶催化下一个NTP与其形成磷酸二酯键,同时水解掉焦磷酸,当第一个磷酸二酯键形成,因子脱落,留下核心酶。,因为DNA双链分子包含许多基因,而各个基因的模板链不都在同一条DNA链上。,28,29,(二)延长:1.核心酶沿模板链35滑动,

9、不断催化与模板配对并结合的NTP之间形成磷酸二酯键,使RNA链由53端延长。(注:新合成的RNA链与DNA模板链方向相反,合成时遵守碱基配对原则:A=U,CG,TA) 2.合成的RNA链脱离模板,DNA恢复双链结构,30,(三)终止:核心酶自身(或在因子协助下)识别终止信号(终止子),停止滑动。然后RNA链(即RNA前体),核心酶先后由模板链脱落,DNA恢复原状。 1.自动终止:终止子处转录出发夹样结构RNA,阻止核心酶继续滑行。2.依赖因子的转录终止:因子:协助核心酶识别终止子的特殊蛋白质,可使DNA-RNA双链解开,释放出RNA,并与核心酶一同脱落。脱落的核心酶又可与因子结合为DDRP,重

10、新开始新的转录。,31,32,三、转录后的加工和修饰(RNA前体的成熟)在细胞内一系列酶的作用下,对新合成的RNA分子或RNA前体进行各种化学修饰、添加、剪切、剪接、编辑等反应,使之转变为有特定生物活性的成熟RNA的过程。1、mRNA前体的加工(真核细胞内mRNA前体又称核内不均一RNA,hnRNA)(1)首尾修饰:在5端加上“帽子”m7GPPP(7-甲基鸟嘌呤三磷酸核苷);3端接上“尾巴”polyA(多聚腺苷酸)。,33,34,(2)剪接:由hnRNA中切除内含子(不编码蛋白质的DNA碱基顺序转录出的RNA碱基顺序)拼接外显子(可被翻译成蛋白质的DNA碱基顺序转录来的RNA碱基顺序)。,35

11、,36,2、tRNA前体的加工(部位:胞浆)(1)剪切:分别在5端和3端切去一定的核苷酸序列等。(2)碱基修饰:AAm、UDHU、AI、U等,形成一些稀有碱基。这些碱基在蛋白质合成过程中影响tRNA对密码的识别。(3)3端接上CCA,所以tRNA3末端均为CCA-OH。,37,38,3、rRNA前体的加工(部位:核仁)rRNA前体+蛋白质核糖体(亦称核蛋白体),39,小 结 基因转录也称之RNA合成,合成是按照53方向进行的。RNA合成不需要预先存在的引物。RNA合成需要DNA依赖性的RNA聚合酶全酶。E.coli RNA聚合酶是由5个亚基组成的,其中的亚基在转录起始时识别启动子。真核生物有3

12、种不同的RNA聚合酶全酶,分别称之RNA pol I、RNA pol II和RNA pol III。转录包括3个阶段:起始、延伸和终止。E.coli中的转录起始涉及RNA聚合酶全酶结合到35和10的启动子区中的特定序列。在RNA合成开始之前,RNA聚合酶复合物需要经历一个由非活性的封闭性复合体到开放性复合体的构象变化。 初级RNA转录物的转录后加工包括RNA剪接、5戴帽、3聚腺苷酸化以及tRNA碱基修饰。核酶是具有催化能力的RNA分子,它能够在特定的部位切断大的RNA分子。rRNA和tRNA加工涉及大的前体转录产物的依次切断,最后获得功能性的RNA产物。真核生物的mRNA含有一个5-7-甲基鸟

13、苷帽子和3聚腺苷酸尾巴,这两种修饰都是通过特殊的酶加上去的。,40,第三节 蛋白质的生物合成翻译,一、参与翻译的物质(蛋白质生物合成体系)(一)原料:氨基酸20种(二)酶及蛋白因子1.氨基酰tRNA合成酶氨基酸tRNA ATP 氨基酰-tRNAAMPPPi2.转肽酶:促使肽键的形成3.蛋白因子:起始、延长和终止因子,41,42,起始因子原核生物(3种):IF1、IF2、IF3真核生物(多种):其中eIF2是合成调控的关键物质延长因子原核生物:EFTu、Ts和EFG真核生物:EFT1、EFT2终止因子:释放因子(RF)原核生物(3种)真核生物(1种),43,(三)RNA1.mRNA(模板)密码:

14、mRNA中由53 每三个相邻的核苷酸组成一个三联体代表一种氨基酸。数量:43=64-(UAA、UAG、UGA)=61其中UAA、UAG、UGA为终止密码AUG为起始密码,也代表蛋氨酸密码特点:(1)简并性:一种氨基酸具有2个或以上密码子的现象。,44,20种氨基酸中除蛋氨酸色氨酸外其余均有26个密码。确定同一个氨基酸的不同密码称为同义密码 密码的头两个碱基就可以确定一个氨基酸例如编码甘氨酸的密码有4个,都开始于GG:GGU,GGC,GGA,和GGG。所以,即使3位的碱基突变,仍然会编码同一个氨基酸到蛋白质中。减少有害突变,确保遗传的稳定性 (2)通用性:几乎所有生物体内都使用同一套遗传密码表(

15、除部分线粒体和叶绿素),45,(3)方向性5(AUG)(UAA、UAG、UGA) 3翻译生成的蛋白质:N端 C端(4)连续性翻译时从起始密码开始,一个不漏地读下去,直至碰到终止密码。如果插入或删除一个B,就会使该B以后的读码发生错误,称为移码。由于移码引起的突变称移码突变。遗传密码一般不重叠。(5)摆动性tRNA与mRNA通过反密码和密码形成碱基配对相互作用,但这种配对作用存在某些变通性。,46,当密码与反密码相互作用时,形成的三个碱基对只有两个要求Watson-Crick碱基配对,即密码与反密码的3和中间的碱基形成Watson-Crick碱基配对,而反密码的5位容许其它类型的碱基配对。 此特

16、性能明显加快翻译的速度。,47,2.tRNA(搬运氨基酸的工具)(1)tRNA反密码环上的反密码识别所要转运的AA种类。(特异性结合氨基酸)(2)在氨基酸-tRNA合成酶(又称AA活化酶)催化下,tRNA的3-OH末端连接相应AA,生成氨基酰-tRNA。(3)反密码与mRNA分子上的密码按碱基配对原则相互识别(即密码与反密码方向相反、碱基互补),使所携带的AA按mRNA上的AA密码顺序“对号入座”。有时密码的第三个碱基与反密码不遵守碱基配对原则,叫不稳定配对。,48,结合氨基酸,结合氨基酰tRNA合成酶,结合核蛋白体,识别密码子,49,3. rRNA:和蛋白质组成核糖体(装配机)(1)核糖体种

17、类:附着于粗面内质网上的核糖体,合成细胞的外分泌蛋白。游离于胞浆中的核糖体,合成细胞固有蛋白。(2)核糖体结构:小亚基:结合mRNA、氨基酰-tRNA、大亚基大亚基:有三个结合位点受位(A位):结合氨基酰tRNA给位(P位):结合肽酰tRNA出位(E位):结合空载tRNA大亚基具有转肽酶活性,能促使肽键形成并延长肽链。(四)ATP、GTP、K+、Mg2+等,50,二、蛋白质生物合成过程(以原核细胞为例)1、AA的活化与转运:2、翻译过程:按mRNA密码顺序,AA在核糖体上合成多肽链的过程。分为: (1)肽链的起始:在起始因子、Mg2+参与下,由GTP供能,使小亚基、大亚基、mRNA和起始蛋氨酸

18、-tRNA结合构成起始复合物。此时,起始蛋氨酸-tRNA位于大亚基给位(P位)。(2)肽链的延长:1)注册:接受位(A位)处 mRNA的密码,相应氨基酰-tRNA进位于受位。需延长因子参与,由GTP供能。,51,2)成肽:在大亚基上转肽酶的催化下,给位上的蛋氨酸(或肽酰)以肽键转接于受位的氨基酰上,给位空载的tRNA的脱落。需K+、Mg2+参与。3)转位:在延长因子作用下,由GTP供能,转位酶催化,核糖体沿mRNA53移动一个密码位置,使原在受位的tRNA移到给位,受位空出。另一个氨基酰-tRNA的再注册、成肽、转位,如此循环,肽链延长。(3)翻译的终止:当肽链合成至受位上出现了终止密码,由终

19、止因子识别并结合于受位,诱导转肽酶变构成水解酶,催化肽链由tRNA的3末端脱落释放出来。需GTP供能。随后tRNA、mRNA、大亚基、小亚基先后分离。,52,三、翻译后的加工:大多数新合成的多肽链需经过一定的修饰才具有生物活性。1.切除N端蛋AA残基。2.某些蛋白质-S-S-的形成。3.部分肽段的水解切除。4.氨基酸残基的修饰:如磷酸化、羟化、甲基化等。5.辅基结合:如珠蛋白要结合血红素形成血红蛋白。6.亚单位聚合:如LDH由四个亚单位聚合成四聚体才有活性。,53,蛋白质的靶向运输,54,蛋白质合成抑制剂有很多抗生素和毒素可以抑制原核或真核生物的蛋白合成,它们的抑制机理各不相同。例如抗生素:嘌

20、呤霉素的结构非常类似于氨酰-tRNA的3末端的结构,可以进入核糖体的A位。肽酰转移酶催化新生成的多肽转移至嘌呤霉素的游离的氨基上。由于肽酰嘌呤霉素在A位处的结合弱,很快就从核糖体上解离,因此就可终止蛋白质的合成。 四环素和氯霉素是两个能特异抑制细菌翻译的抗生素。四环素可以和原核生物核糖体的30S亚基结合,阻止氨酰-tRNA进入A位。氯霉素可以与50S的核糖体亚基相互作用,抑制肽酰转移酶。链霉素抑制蛋白质合成的起始,也能引起肽链延伸阶段的mRNA的错读,改变细菌中翻译的忠实性。,55,白喉毒素是已知的最有潜力的毒素,只要一分子的白喉毒素就足可以使真核细胞内的延伸因子eEF-2失活,导致死亡。蓖麻毒蛋白是从蓖麻中分离出来的,其作用模式是通过切断N苷键除去腺嘌呤碱基使真核生物的28 S rRNA失活,导致翻译终止。,56,水光潋滟晴方好,山色空蒙雨亦奇。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号