《全等三角形的判定hl课件.ppt》由会员分享,可在线阅读,更多相关《全等三角形的判定hl课件.ppt(16页珍藏版)》请在三一办公上搜索。
1、三角形全等的判定(hl),旧知回顾,判断两个三角形全等的方法我们已经学了哪些呢?,SSS,SAS,ASA,AAS,三边分别相等的两个三角形全等。,两边和它们夹角分别相等的两个三角形全等。,两角和它们的夹边分别相等的两个三角形全等。,两角分别相等且其中一组等角的对边相等的两个三角形全等。,如图,ABC中, C =90,直角边是_、_,斜边是_。,我们把直角ABC记作RtABC。,AC,BC,AB,思考:,对于两个直角三角形,除了直角相等的条件外,还要满足几个条件,这两个三角形就全等了?,如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆
2、遮住无法测量.,(1)你能帮他想个办法吗?,方法一:测量斜边和一个对应的锐角. (AAS),方法二:测量没遮住的一条直角边和一个对应的锐角. (ASA)或(AAS),情境问题1:,B=F=Rt ,若AB=DF,A=D,则利用 可判定全等;,A SA,若AB=DF,C=E,则利用 可判定全等;,A AS,若AC=DE,C=E,则利用 可判定全等;,A AS,若AC=DE,A=D,则利用 可判定全等;,A AS,若AC=DE,A=D,AB=DE,则利用 可判定全等;,S AS,工作人员是这样做的,他测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的
3、”。你相信他的结论吗?,情境问题2:,对于两个直角三角形,若满足一条直角边和一条斜边对应相等时,这两个直角三角形全等吗?,如果工作人员只带了一条尺,能完成这项任务吗?,任意画出一个RtABC,C=90。,B,A,按照下面的步骤画RtABC, 作MCN=90;, 在射线CM上取段BC=BC;, 以B为圆心,AB为半径画弧,交 射线CN于点A;, 连接AB.,请你动手画一画,再画一个RtABC,使得C= 90, BC=BC,AB= AB。,斜边和一条直角边分别相等的两个三角形全等,,数学语言:,在RtABC和RtABC中,(HL),BC=BC,简写为“斜边、直角边”或“HL”。,直角三角形的判定方
4、法,想一想,你能够用几种方法说明两个直角三角形全等?,直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS、ASA、AAS、SSS,还有直角三角形特殊的判定方法“HL”.,练一练, 如图,AC=AD,C,D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?,解:在RtACB和RtADB中,则, RtACBRtADB (HL).,BC=BD(全等三角形对应边相等).,议一议,如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角ABC和DFE的大小有什么关系?,ABC+DFE=90.,解:在RtABC和RtDEF中,则, RtABC
5、RtDEF (HL).,ABC=DEF(全等三角形对应角相等)., DEF+DFE=90,ABC+DFE=90.,如图, ACB =ADB=90,要证明ABC BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由。(1) ( )(2) ( )(3) ( )(4) ( ),练一练,AD=BC, DAB= CBA,BD=AC, DBA= CAB,HL,HL,AAS,AAS,判断两个直角三角形全等的方法有:,(1): ;,(2): ;,(3): ;,(4): ;,SSS,SAS,ASA,AAS,(5): ;,HL,小结,1. 如图,AB=CD,AE BC,DF BC, CE=BF. 求证:AE=DF.,2.如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,此时,DAAB,EBAB,D、E到路段AB的距离相等吗?为什么?,4. 如图:ACBC,BDAD,AC=BD.求证:OA=OB.,3. 如图, ABBC,ADDC,且AD=AB , 求证:BC=DC,