理想电路元件课件.ppt

上传人:小飞机 文档编号:1488212 上传时间:2022-12-01 格式:PPT 页数:51 大小:1.29MB
返回 下载 相关 举报
理想电路元件课件.ppt_第1页
第1页 / 共51页
理想电路元件课件.ppt_第2页
第2页 / 共51页
理想电路元件课件.ppt_第3页
第3页 / 共51页
理想电路元件课件.ppt_第4页
第4页 / 共51页
理想电路元件课件.ppt_第5页
第5页 / 共51页
点击查看更多>>
资源描述

《理想电路元件课件.ppt》由会员分享,可在线阅读,更多相关《理想电路元件课件.ppt(51页珍藏版)》请在三一办公上搜索。

1、1,下 页,1.5 理想电路元件,是电路中最基本的组成单元。,1. 电路元件,返 回,5种基本的理想电路元件:,电阻元件:表示消耗电能的元件,电感元件:表示产生磁场,储存磁场能量的元件,电容元件:表示产生电场,储存电场能量的元件,电压源和电流源: 表示将其它形式的能量转变成电能的元件。,注意,如果表征元件端子特性的数学关系式是线性关系,该元件称为线性元件,否则称为非线性元件。,2,一.电阻元件,2.线性时不变电阻元件,电路符号,电阻元件,对电流呈现阻力的元件。其特性可用ui平面上的一条曲线来描述:,任何时刻端电压与电流成正比的电阻元件。,1.定义,伏安特性,下 页,上 页,0,返 回,3,ui

2、 关系,R 称为电阻,单位: (Ohm),满足欧姆定律,单位,G 称为电导,单位:S (Siemens),下 页,上 页,伏安特性为一条过原点的直线,返 回,4,如电阻上的电压与电流参考方向非关联,公式中应冠以负号;,说明线性电阻是无记忆、双向性的元件。,欧姆定律,只适用于线性电阻( R 为常数);,则欧姆定律写为,u R i i G u,公式和参考方向必须配套使用!,下 页,上 页,注意,返 回,5,3.功率和能量,电阻元件在任何时刻总是消耗功率的。,p -u i -(R i) i i2 R u2/ R,p u i i2R u2 / R,功率,下 页,上 页,表明:,返 回,6,4.电阻的开

3、路与短路,短路,开路,下 页,上 页,0,0,返 回,7,二. 电压源和电流源,电路符号,1.理想电压源,定义,i,+,_,下 页,上 页,其两端电压总能保持定值或一定的时间函数,其值与流过它的电流 i 无关的元件叫理想电压源。,返 回,8,电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。,通过电压源的电流由电源及外电路共同决定。,理想电压源的电压、电流关系,直流电压源的伏安关系,下 页,上 页,例,外电路,电压源不能短路!,0,返 回,9,电压源的功率,电压、电流参考方向非关联;,下 页,上 页,电压、电流参考方向关联;,返 回,10,例,计算图示电路各元件的功率,解

4、,?发出,吸收,吸收,满足:P(发)P(吸),下 页,上 页,返 回,11,其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u 无关的元件叫理想电流源。,电路符号,2.理想电流源,定义,下 页,上 页,理想电流源的电压、电流关系,电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关。,返 回,12,电流源两端的电压由电源及外电路共同决定。,直流电流源的伏安关系,下 页,上 页,0,例,外电路,电流源不能开路!,返 回,13,可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电子被激发产生一定值的电流等。,下 页,上 页,实际电流源的产生

5、:,电流源的功率,电压、电流的参考方向非关联;,发出功率,起电源作用,电压、电流的参考方向关联;,吸收功率,充当负载,返 回,14,例,计算图示电路各元件的功率,解,发出,吸收,满足:P(发)P(吸),下 页,上 页,u,is=2A,i,+,_,5V,-,+,返 回,15,实际电源,干电池,钮扣电池,1. 干电池和钮扣电池(化学电源),干电池电动势1.5V,仅取决于(糊状)化学材料,其大小决定储存的能量,化学反应不可逆。,钮扣电池电动势1.35V,用固体化学材料,化学反应不可逆。,下 页,上 页,返 回,16,氢氧燃料电池示意图,2. 燃料电池(化学电源),电池电动势1.23V。以氢、氧作为燃

6、料。约40-45%的化学能转变为电能。实验阶段加燃料可继续工作。,下 页,上 页,返 回,17,3. 太阳能电池(光能电源),一块太阳能电池电动势0.6V。太阳光照射到P-N结上,形成一个从N区流向P区的电流。约 11%的光能转变为电能,故常用太阳能电池板。,一个50cm2太阳能电池的电动势0.6V,电流0.1A,太阳能电池示意图,太阳能电池板,下 页,上 页,返 回,18,蓄电池示意图,4. 蓄电池(化学电源),电池电动势2V。使用时,电池放电,当电解液浓度小于一定值时,电动势低于2V,常要充电,化学反应可逆。,下 页,上 页,返 回,19,直流稳压源,函数发生器,下 页,上 页,返 回,2

7、0,发电机组,下 页,上 页,返 回,21,草原上的风力发电,下 页,上 页,返 回,22,受控电源,电路符号,受控电压源,受控电流源,1.定义:电压或电流的大小和方向不是给定的时间函数,而是受电路中某个地方的电压(或电流)控制的电源,称受控源。,下 页,上 页,返 回,23,电流控制的电流源 ( CCCS ), : 电流放大倍数,根据控制量和被控制量是电压u 或电流i,受控源可分四种类型:当被控制量是电压时,用受控电压源表示;当被控制量是电流时,用受控电流源表示。,2.分类,四端元件,输出:受控部分,输入:控制部分,下 页,上 页,返 回,24,g: 转移电导,电压控制的电流源 ( VCCS

8、 ),电压控制的电压源 ( VCVS ),: 电压放大倍数,下 页,上 页,返 回,25,电流控制的电压源 ( CCVS ),r : 转移电阻,例,电路模型,下 页,上 页,返 回,26,3.受控源与独立源的比较,独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。,独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源是反映电路中某处的电压或电流对另一处的电压或电流的控制关系,在电路中不能作为“激励”。,下 页,上 页,返 回,27,三、理想电容元件,储存电场,q=Cu,C,+q,-q,直流,电压电流的关系为,功率,28,一段时间吸收的

9、能量为,电容是储能元件:,29,四 理想电感元件,定义:磁链数与通过的电流成正比,对上式积分:,能量和功率:,30,求:电压u2,解,下 页,上 页,返 回,31,1.6 基尔霍夫定律,基尔霍夫定律包括基尔霍夫电流定律 (KCL)和基尔霍夫电压定律( KVL )。它反映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。,下 页,上 页,返 回,32,1.几个名词,电路中通过同一电流的分支。,元件的连接点称为结点。,b=3,a,n=4,b,支路,电路中每一个两端元件就叫一条支路,i2,结点,b=5,下 页,上 页,或三条以上支路

10、的连接点称为结点。,n=2,返 回,33,由支路组成的闭合路径。,两结点间的一条通路。由支路构成,对平面电路,其内部不含任何支路的回路称网孔。,l=3,3,路径,回路,网孔,网孔是回路,但回路不一定是网孔。,下 页,上 页,注意,返 回,34,2.基尔霍夫电流定律 (KCL),令流出为“+”,有:,例,在集总参数电路中,任意时刻,对任意结点流出(或流入)该结点电流的代数和等于零。,下 页,上 页,返 回,35,例,三式相加得:,KCL可推广应用于电路中包围多个结点的任一闭合面。,下 页,上 页,表明,返 回,36,KCL是电荷守恒和电流连续性原理在电路中任意结点处的反映;,KCL是对结点处支路

11、电流加的约束,与支路上接的是什么元件无关,与电路是线性还是非线性无关;,KCL方程是按电流参考方向列写的,与电流实际方向无关。,下 页,上 页,明确,返 回,37,3.基尔霍夫电压定律 (KVL),下 页,上 页,标定各元件电压参考方向,选定回路绕行方向,顺时针或逆时针.,在集总参数电路中,任一时刻,沿任一回路,所有支路电压的代数和恒等于零。,返 回,38,U1US1+U2+U3+U4+US4= 0,U2+U3+U4+US4=U1+US1,或:,R1I1+R2I2R3I3+R4I4=US1US4,下 页,上 页,KVL也适用于电路中任一假想的回路。,注意,返 回,39,例,KVL的实质反映了电

12、路遵从能量守恒定律;,KVL是对回路中的支路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,KVL方程是按电压参考方向列写,与电压实际方向无关。,下 页,上 页,明确,返 回,40,4. KCL、KVL小结:,KCL是对支路电流的线性约束,KVL是对回路电压的线性约束。,KCL、KVL与组成支路的元件性质及参数无关。,KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)。,KCL、KVL只适用于集总参数的电路。,下 页,上 页,返 回,41,下 页,上 页,思考,返 回,42,下 页,上 页,例1,求电流 i,解,例2,解,求电压 u,

13、返 回,43,下 页,上 页,例3,求电流 i,例4,求电压 u,解,解,要求,能熟练求解含源支路的电压和电流。,返 回,44,解,下 页,上 页,例5,求电流 I,例6,求电压 U,解,返 回,45,解,下 页,上 页,例7,求开路电压 U,返 回,46,1. 6 基尔霍夫定律,支路:电路中的每一个分支。 一条支路流过一个电流,称为支路电流。,结点:三条或三条以上支路的联接点。,回路:由支路组成的闭合路径。,网孔:内部不含支路的回路。,47,1.6.1 基尔霍夫电流定律(KCL定律),1定律,即: 入= 出,在任一瞬间,流向任一结点的电流等于流出该结点的电流。,实质: 电流连续性的体现。,或

14、: = 0,对结点 a:,I1+I2 = I3,或 I1+I2I3= 0,基尔霍夫电流定律(KCL)反映了电路中任一结点处各支路电流间相互制约的关系。,48,例1:,支路:ab、bc、ca、 (共6条),回路:abda、abca、 adbca (共7 个),结点:a、 b、c、d (共4个),网孔:abd、 abc、bcd (共3 个),49,电流定律可以推广应用于包围部分电路的任一假设的闭合面。,2推广,I =?,例:,I = 0,IA + IB + IC = 0,广义结点,50,在任一瞬间,沿任一回路循行方向,回路中各段电压的代数和恒等于零。,1.6.2 基尔霍夫电压定律(KVL定律),1

15、定律,即: U = 0,在任一瞬间,从回路中任一点出发,沿回路循行一周,则在这个方向上电位升之和等于电位降之和。,对回路1:,对回路2:,E1 = I1 R1 +I3 R3,I2 R2+I3 R3=E2,或 I1 R1 +I3 R3 E1 = 0,或 I2 R2+I3 R3 E2 = 0,基尔霍夫电压定律(KVL) 反映了电路中任一回路中各段电压间相互制约的关系。,51,1列方程前标注回路循行方向;,电位升 = 电位降 E2 =UBE + I2R2, U = 0 I2R2 E2 + UBE = 0,2应用 U = 0列方程时,项前符号的确定: 如果规定电位降取正号,则电位升就取负号。,3. 开口电压可按回路处理,注意:,对回路1:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号