《违背经典假设的回归模型课件.pptx》由会员分享,可在线阅读,更多相关《违背经典假设的回归模型课件.pptx(73页珍藏版)》请在三一办公上搜索。
1、1,第4章 违背经典假设的回归模型,第一节 异方差性,谢谢观赏,2019-6-25,2,违背基本假设的情况,在前述基本假定下OLS估计具有BLUE的优良性。(Best Linear Unbiased Estmator)然而实际问题中,这些基本假定往往不能满足,使OLS方法失效不再具有BLUE特性。估计参数时,必须检验基本假定是否满足,并针对基本假定不满足的情况,采取相应的补救措施或者新的方法。检验基本假定是否满足的检验称为计量经济学检验,谢谢观赏,2019-6-25,3,BLUE的优良性,1、最小二乘估计量是线性估计量估计量是因变量观察值的线性组合2、最小二乘估计量是无偏估计量估计量的数学期望
2、等于被估计的参数3、最小二乘估计量是一切线性、无偏估计量中的最佳估计量,因为它的方差最小这些性质是由高斯-马尔科夫定理保证的,谢谢观赏,2019-6-25,4,不满足基本假定使高斯-马尔科夫定理失效,1、随机扰动项的方差不等于常数=异方差截面数据时,经常出现异方差2、随机扰动项相关=序列相关时间序列数据经常出现序列相关3、随机扰动项具有水平变动=变量误差模型4、随机扰动项与所有自变量不相关=自变量之间不相关=多重共线通常不会发生随机扰动项均值=0与非线性模型的假设不满足的情形,上页,谢谢观赏,2019-6-25,5,回顾6项基本假定,(1)残差纵向变动 (隐含自变量X是确定性变量)(2)E(e
3、i)=0 (随机项均值为零) (3)Var(ei)=2 (同方差) (4)Cov(ei, ej)=0(随机项无自相关) (5)Cov(x, ei)=0(随机项与解释变量X不相关)自变量间不相关(6)数据生成过程为线性过程 (只讨论线性模型) Y=X+e,下页,谢谢观赏,2019-6-25,6,基本假定违背的解决办法,1随机扰动项e不是同方差,而是异方差=检验是否存在=消除异方差2随机扰动项e存在序列相关(存在自相关)=检验是否存在=消除自相关3解释变量是随机变量,且与e相关 (=误差变量模型第15章)4解释变量之间线性相关,存在多重共线(=模型技术上,只能采用逐步回归、主成分回归、岭回归等),
4、谢谢观赏,2019-6-25,7,计量经济学检验,采取补救措施和方法之前,需要根据实际样本资料对模型是否满足这些基本假定逐项进行检验,这种检验称为计量经济学检验。计量经济学检验仍然是一种假设检验,它是对随机扰动项是否满足基本假定的假设检验。,谢谢观赏,2019-6-25,8,解决问题的思路,1、违反6项基本假定之一的定义异方差、自相关、误差变量模型、多重共线的基本概念2、违反基本假定的原因3、怎样诊断基本假定的违反4、消除或减弱对基本假定的违反出现违反基本假定的补救措施,谢谢观赏,2019-6-25,9,计量经济学检验有两种基本方法,图示法和解析法,谢谢观赏,2019-6-25,10,图示法,
5、是利用残差序列绘制出各种图形,以供分析检验使用。包括:1、时间为X轴,残差e为Y轴的残差序列图2、因变量估计值y为X轴,残差e为Y轴的Y-e散点图3、解释变量为X轴,残差e(或e2)为Y轴的x-e散点图4、残差e的直方图也可以使用误差项的平方来作图,谢谢观赏,2019-6-25,11,解析法,导出检验统计量的解析式,根据一些准则,进行检验。例如:1、检验异方差的Goldfeld-Quandt检验2、检验自相关的Durbin-Watson检验3、检验多重共线的简单相关系数和综合统计检验法等,谢谢观赏,2019-6-25,12,讨论问题的思路与步骤,1、违反6项基本假定之一的定义异方差、自相关、误
6、差变量模型、多重共线的基本概念2、违反基本假定的原因3、怎样诊断基本假定的违反图示法和解析法4、消除或减弱对基本假定的违反出现违反基本假定的补救措施,谢谢观赏,2019-6-25,13,第十章的主要内容,第一节 异方差概述第二节 如何发现异方差第三节 异方差的后果第四节 异方差的解决方法案例一 个人储蓄模型案例二 人均消费函数案例三 分组资料 案例四 我国北方农业产出模型,谢谢观赏,2019-6-25,14,第一节异方差概述,1、异方差的定义2、现实社会经济中异方差是很常见的3、处理截面数据时,尤应注意4、原因1:使用截面数据研究储蓄函数5、原因2:用分组资料研究Cobb-Douglass生产
7、函数,谢谢观赏,2019-6-25,15,异方差的定义,谢谢观赏,2019-6-25,16,异方差产生的原因1:使用截面数据研究储蓄函数,谢谢观赏,2019-6-25,17,原因2:用分组资料研究Cobb-Douglass生产函数(参见应用回归分析P94,谢谢观赏,2019-6-25,18,第二节 异方差的检验 (如何发现异方差),1、图示法2、解析法,谢谢观赏,2019-6-25,19,1、图示法及其类型,异方差是指e的方差随着x的变化而变化。故可以根据x-y或残差x-e2的散点图,对异方差是否存在及其类型作出判断。异方差大致可分为三种:(1)递增异方差(2)递减异方差(3)复杂型异方差,谢
8、谢观赏,2019-6-25,20,谢谢观赏,2019-6-25,21,谢谢观赏,2019-6-25,22,谢谢观赏,2019-6-25,23,谢谢观赏,2019-6-25,24,谢谢观赏,2019-6-25,25,谢谢观赏,2019-6-25,26,谢谢观赏,2019-6-25,27,谢谢观赏,2019-6-25,28,谢谢观赏,2019-6-25,29,谢谢观赏,2019-6-25,30,怎样通过Eviews作x-y散点图,Scat y x 回车 (作散点图的命令)其中 y(第一位)是y轴,x(第二位)是x轴。并观察其是否成:(1)喇叭型或倒喇叭型(2)纺锤型或反纺锤型(3)以及其它有规则的
9、图形(除线性条形)。以上三种均可能存在异方差。,谢谢观赏,2019-6-25,31,怎样通过Eviews作x- e2 散点图,1、键入 LS y c x 作回归2、键入 GENR E1=resid 调用残差3、键入 GENR E2=E12 生成残差平方4、键入 SCAT E2 X 或 SCAT E1 X如果呈现出某种有规律的分布,说明残差中蕴涵作模型(1)未提取净的信息,或(2)可能存在异方差或自相关,或(3)设定有误。,谢谢观赏,2019-6-25,32,1。纺锤型,谢谢观赏,2019-6-25,33,2。反纺锤型,谢谢观赏,2019-6-25,34,3。漏斗型,谢谢观赏,2019-6-25
10、,35,4。反漏斗型,谢谢观赏,2019-6-25,36,5。其它有规律可寻的图形,谢谢观赏,2019-6-25,37,2、解析法(主要介绍Goldfeld-Quant检验),1。RESET检验2。WHITE检验3。GEJSTER检验4。Goldfeld-Quant检验5。Park检验,谢谢观赏,2019-6-25,38,下页,谢谢观赏,2019-6-25,39,上页,没有侦察出来,谢谢观赏,2019-6-25,40,下页,谢谢观赏,2019-6-25,41,上页,因变量,没有侦察出来,谢谢观赏,2019-6-25,42,Goldfeld-Quant检验,1。 Goldfeld-Quant检验
11、的思路2。 Goldfeld-Quant检验的几何意义3。 Goldfeld-Quant检验具体做法4。 Goldfeld-Quant检验在EViews上的实现G-Q检验统计量F及其检验5。 Goldfeld-Quant检验适用条件,谢谢观赏,2019-6-25,43,1。 Goldfeld-Quant检验的思路,先将样本一分而二,对子样1和子样2分别作回归,然后利用两个子样的残差的方差之比构造检验统计量F进行异方差检验。这个检验统计量服从F分布。递增异方差,方差之比就会远远大于1;反之,同方差,方差之比趋近于1递减异方差,方差之比远远小于1,谢谢观赏,2019-6-25,44,2。 Gold
12、feld-Quant检验的几何意义,谢谢观赏,2019-6-25,45,谢谢观赏,2019-6-25,46,3。 G-Q检验具体做法,(1)将n对观察值(xi,yi),按解释变量x的大小顺序排列(2)将其中的 c = n / 4 个观察值除去,余下前后两个子样本(3)每个子样的个数为(n-c)/2,各自进行回归,分别计算残差平方和,自由度=(n-c)/2-k-1,k是模型中自变量个数(4)提出假设:两个子样方差相等(5)进行F检验,谢谢观赏,2019-6-25,47,G-Q检验统计量F及其检验,谢谢观赏,2019-6-25,48,4。 Goldfeld-Quant检验在EViews上的实现,(
13、1)用SORT X 以X为条件排序(2)用SMPL命令定义两个子样(3)用LS命令进行两次回归,计算出残差平方和(可以直接读出)与自由度(4)进行F检验,谢谢观赏,2019-6-25,49,5。Goldfeld-Quant检验适用条件,G-Q检验以F检验为基础适用于样本容量较大、异方差递增或递减的情况,谢谢观赏,2019-6-25,50,OLS处理结果,谢谢观赏,2019-6-25,51,谢谢观赏,2019-6-25,52,权数、个人收入散点图,谢谢观赏,2019-6-25,53,WLS输出结果,谢谢观赏,2019-6-25,54,加权WLS处理后的残差自变量散点图,谢谢观赏,2019-6-2
14、5,55,模型变换法,谢谢观赏,2019-6-25,56,模型变换法OLS处理结果,谢谢观赏,2019-6-25,57,Lx4lchf106.wf1原始数据,谢谢观赏,2019-6-25,58,OLS估计结果,谢谢观赏,2019-6-25,59,OLS估计残差与自变量的散点图典型纺锤型,谢谢观赏,2019-6-25,60,谢谢观赏,2019-6-25,61,模型变换法估计结果,请比较残差平方和是否减小,谢谢观赏,2019-6-25,62,模型变换法后的残差与自变量的散点图,谢谢观赏,2019-6-25,63,GEJSTER检验的思路,格里奇和帕克检验是用残差的绝对值或者残差的平方值序列,分别对
15、X进行回归由回归的拟合优度、显著性判断异方差是否存在。若显著,则存在异方差,并得到异方差的函数形式。反之则不存在。它们的优点:可以近似地给出异方差的存在形式: 2i = 2 f(xi)。以便用模型法消除异方差。1.GEJSTER检验的步骤2.EViews中实现GEJSTER检验3. GEJSTER检验的程序,谢谢观赏,2019-6-25,64,GEJSTER检验的步骤,(1)用原始数据估计模型,计算残差直接读取resid(2)用残差绝对值与X进行回归:| e|=b0+b1xh+u u满足基本假定,幂次通常需要选择多种值试算,如h=1,2,-1,1/2等(3)经过R2、F、t检验找出最优的回归方
16、程形式,或无异方差,谢谢观赏,2019-6-25,65,EViews中实现GEJSTER检验,(1)LS Y C X(2)GENR E1=resid(3)GENR E2=E1*E1 或取绝对值(4)GENR XH=XH (依次分别取H=1,2,-1,1/2,)生成Xh序列(5)LS E2 C XH(6)重复(4)直至找出适合的方程形式,谢谢观赏,2019-6-25,66,Glejster程序,谢谢观赏,2019-6-25,67,Park检验的的思想,Park认为随机扰动项ei的形式为2i = 2 xi b1ev 两边取对数,ln2i =ln 2+b1ln xi +Vi 令 ln2 =b0ln2
17、i = b0 +b1ln xi +Vi两边取对数,进行OLS。若显著存在异方差,且找到函数形式;否则无异方差。1.Park检验的步骤2.EViews中进行Park检验的步骤3.PARK程序,谢谢观赏,2019-6-25,68,Park检验的步骤,(1)拟合回归方程,计算残差(2)计算残差平方和(3)取残差平方和、解释变量X的对数(4)用对数变换后的数据拟合回归方程(5)作统计检验,判断异方差是否存在,谢谢观赏,2019-6-25,69,EViews中进行Park检验的步骤,(1)LS Y C X(2)GENR E1=resid(3)GENR E2=E1*E1(4)GENR LNE2=LOG(E
18、2)(5)GENR LNX=LOG(X)(6)LS LNE2 C LNX,谢谢观赏,2019-6-25,70,load c:eviewslx4lchf106.wf1equation yeq.ls y c xgenr e1=residgenr e2= e1*e1genr lne2=log(e2)genr lnx=log(x)equation lne2eq.ls lne2 c lnxshow yeq.resid(g)show lne2eq.resid(g),PARK程序,谢谢观赏,2019-6-25,71,关于“自由度”,“自由度”即:number of degrees of freedom“.它是指样本中观测值的总数(n)减去对它们的独立的(线性)约束或限制的个数。换句话说,它是观测值的总个数中独立的观测值的个数。例如:“RSS” ,在能够计算它的值之前,必须先算出B0和B1。这两个估计值就是附加给RSS的两个约束条件。,谢谢观赏,2019-6-25,72,因此,在计算RSS时,就只有n-2而不是n个独立观测值。按照这一逻辑,在3个变量回归中RSS将有n-3个自由度。因此,对于k个参数的模型,它就有n-k个自由度。一般规律是:df=n-待估参数的个数,谢谢观赏,2019-6-25,73,谢谢观赏,2019-6-25,