网络互动营销的几个关键点课件.ppt

上传人:牧羊曲112 文档编号:1549906 上传时间:2022-12-04 格式:PPT 页数:39 大小:708.50KB
返回 下载 相关 举报
网络互动营销的几个关键点课件.ppt_第1页
第1页 / 共39页
网络互动营销的几个关键点课件.ppt_第2页
第2页 / 共39页
网络互动营销的几个关键点课件.ppt_第3页
第3页 / 共39页
网络互动营销的几个关键点课件.ppt_第4页
第4页 / 共39页
网络互动营销的几个关键点课件.ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《网络互动营销的几个关键点课件.ppt》由会员分享,可在线阅读,更多相关《网络互动营销的几个关键点课件.ppt(39页珍藏版)》请在三一办公上搜索。

1、IEEE C37.234 Guide for Protective Relay Application to Power System Buses,B.Kasztenny (Chairman), S.Conrad (Vice-Chairman), P.Beaumont, K.Behrendt, O.Bolado, J.Boyle, G.Brunello, J.Burger, F.Calero, S.Chano, G.Dalke, A.Darlington, H.DoCarmo, D.Fontana, Z.Gajic, J.Holbach, L.Kojovic, F.Lopez, D.Lukac

2、h, D.McGinn, J.Miller, P.Mysore, J.OBrien, B.Pickett, S.Sambasivan, G.Sessler, V.Skendzic, J.Smith, D.Tholomier, M.Thompson, J.Uchiyama, D.Ware, D.Weers, R.Whittaker, R.Young, S.Zocholl,Presentation to the Main Committee of PSRC, January 14, 2010, Orlando, FL,迈鼎 http:/,Table of Contents,DefinitionsB

3、us configurationsIntroduction to bus protectionRelay input sourcesBus protection methodsApplication of bus protection schemesAnnexes,Definitions,23 new terms definedBus protection and primary equipment,breaker substitution Temporary usage of a bus tie breaker in a multiple bus configuration to subst

4、itute for one of the network elements circuit breakers, typically for the maintenance of the latter; also known as breaker transfer,check zone Nonselective part of a multi-zone bus protection system measuring current flows around the entire station and supervising selective tripping from individual

5、bus zones of protection,stub bus Area of a bus or line that becomes isolated from the original zone of protection or an area that loses protection due to the loss of sensing to zone protection relays,Bus design considerations,Continuity of service for the bus and essential network elementsEquipment

6、maintainability and network switching flexibilityEconomical and footprint constraintsSectionalizing requirements to avoid exceeding breaker fault dutiesEase of future bus expansion,Bus arrangements,Single busMain and transfer busDouble-bus double-breakerDouble-bus single-breakerBreaker-and-a-halfRin

7、g bus,Main and transfer bus,Main and transfer bus,Introduction to bus protection,Zones of protectionBus protection methodsScheme selection guidelines,Zones of protection,Dynamic zones of protection,Dynamic zones of protection,Dynamic zones of protection,Zones of protection,Bus protection methods,Dif

8、ferentialDifferentially-connected overcurrentInstantaneousTime-delayedPercentage-restrained differentialRestrainedAdvanced microprocessor basedHigh-impedance differentialResistor-stabilized overcurrentHigh-impedancePartial differential overcurrentFault bus,Bus protection methods,Zone-interlocked sch

9、emesSimple blockingDirectional blockingTime-coordinated relays overlapping the busProtection (sensors) built into the gas isolated switchgear*,* Not covered in the Guide,Scheme selection criteria,Bus arrangement and flexibilityFixed vs. switchable busesAvailability and characteristics of CTsFor reco

10、nfigurable buses, availability of auxiliary contacts of disconnect switchesPerformance requirementsSecurity, Selectivity, Speed, SensitivityCost and complexity,Scheme selection,Relay input sources,Current transformersTypesAccuracy classesEquivalent circuit & time to saturationNo universal CT require

11、mentsVoltage TransformersVoltage trip supervisionDirectional blocking schemesPosition of switches and breakers,Detailed scheme review,Section 7 gives in-depth review of each method following a consistent patternTheory of operationSetting considerationsCT requirementsApplication considerations,Exampl

12、e High-impedance scheme,Voltage setting:Above the maximum voltage for an external fault assuming that one CT saturates completely High enough so that pickup current is above the short circuit current on the secondary of any PT or station service transformer inside the bus zoneBelow the accuracy clas

13、s voltage rating of the lowest accuracy class CT in the differential circuit Low enough so that pickup current is below the minimum fault current for the bus,Example High-impedance scheme,CT requirements:CTs dedicated to bus protection (cannot be shared)Equal CT ratios*The accuracy class voltage rat

14、ing of the CT with the lowest accuracy class above the selected voltage setting, with margin,* Ratio matching covered but discouraged,Application of bus protection,Partial differentialLoadsCapacitor banksApplication with overcurrent and distance relaysCombined bus and transformer zoneBuses with dire

15、ctly connected grounding transformersApplication of auxiliary transformersGenerally discouraged,Application of bus protection,Applications with paralleled CTsGenerally discouragedGuidelines included,Application of bus protection,Application of auxiliary tripping relaysLockout relaysNon-lockout relay

16、sRatings Automatic reclosing after bus faultsDynamic bus replicaCheck-zoneVoltage trip supervision,Dynamic bus replica,Position of switches and breakers,“If not opened, then closed” logic,In-service transfer,In-service transfer,In-service transfer,Check zone,Application of bus protection,Application

17、 of CT trouble detectionDetection methodsFallback strategiesReliable, selective tripping at the differential zone boundaryLine-side CTBus-side CTBus coupler considerationsThe role of Breaker Failure protection,Line-side CT,Bus coupler considerations,Bus coupler considerations,Application of bus prot

18、ection,CT column ground fault protectionIn-zone groundsSurge arrestersSafety grounds and circulating current while testingIn-zone grounding of out-of-service elementsIn-service transfer of network elements and breaker substitution,Breaker substitution,Application of bus protection,Stub bus considera

19、tionsBreaker Failure considerationsBackup protectionLocal backupDuplicated relaysBF, batteries, wiringReverse-looking distance relaysOvercurrent relaysRemote backup,Annexes,Setting example for a high-impedance scheme (Annex A)Logic example for double-bus single-breaker configuration (Annex B)Bus and

20、 Breaker Failure protectionTwo zones, check zone and voltage supervisionIn-service transfers and breaker substitutionSetting guidelines for differentially connected OC schemes (Annex C),C37.234 Highlights,Complex bus arrangements and switchingAdvanced bus protection topics (reconfigurable buses, mP relays)Balanced coverage of high- and low-impedance schemesProtection scheme selection guidelinesCT requirements given per schemeList of application considerationsDetailed examples for most common schemes,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号