自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt

上传人:小飞机 文档编号:1592992 上传时间:2022-12-09 格式:PPT 页数:47 大小:1.89MB
返回 下载 相关 举报
自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt_第1页
第1页 / 共47页
自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt_第2页
第2页 / 共47页
自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt_第3页
第3页 / 共47页
自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt_第4页
第4页 / 共47页
自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt_第5页
第5页 / 共47页
点击查看更多>>
资源描述

《自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt》由会员分享,可在线阅读,更多相关《自旋玻璃与消息传递算法Spin Glass and Message Passing 概要课件.ppt(47页珍藏版)》请在三一办公上搜索。

1、自旋玻璃与消息传递算法Spin Glass and Message-Passing Algorithms,周海军http:/,2,提纲,1。自旋玻璃理论基本图像与平衡自由能分布空腔方法,2。消息传递算法Vertex-Cover 问题, 3-SAT 问题 Survey Propagation算法,3,部分参考文献,Mezard, Parisi, Virasoro, “Spin Glass Theory and Beyond” (World Scientific, 1987)Mezard, Parisi, “The Bethe lattice spin glass revisited”, Euro

2、pean Physics Journal B 20: 217-233 (2001) Mezard, Parisi, Zecchina, “Analytic and algorithmic solution of random satisfiability problems”, Science 297: 812-815 (2002),如果对报告中所涉及的具体模型的计算细节感兴趣,请参考http:/,自旋玻璃理论:自由能分,5,Statistical mechanics of a (simple) system in equilibrium is well-established.,Partiti

3、on function, free energy, .Mean-field treatment. Phase transitions. Correlation length, scaling exponents, . Renormalization flow.,6, but non-equilibrium dynamics of even a simple system may be difficult to understand,Formal framework.Connection with equilibrium.Glassy dynamics. Why relaxation becom

4、es so low and non-exponential?,7,Equilibrium (static) and dynamical properties of complex systems are both difficult and interesting,Quenched randomness, frustration, non-self averaging, , broken ergodicity.NP-complete combinatorial optimizations, message-passing algorithms for information science (

5、CDMA, for example!), econo-physics, , biological systems.,8,自旋玻璃:无序与阻错系统的简单模型,3D regular lattice (Edwards-Anderson, 1975)Complete graph (Sherrington-Kirkpatrick 1975)Random Poisson graph (Viana-Bray, 1985),9,What we learned from an equilibrium statistical mechanics course?,10,What we learned from an

6、 equilibrium statistical mechanics course? (contl.),11,What we learned from an equilibrium statistical mechanics course? (contl.),12,ergodic vs non-ergodic,?,13,repeated heatingannealing and the equilibrium Gibbs measure,Complexity (复杂度),14,distribution of equilibrium free-energies,1,15,distribution

7、 of equilibrium free-energies (contl.),2,16,17,Which thermodynamic states contribute to the equilibrium properties?,If,If,Excited macrostates matter!,Macrostates of minimal free energy density matter!,18,3-spin-Interaction Ising model on a complete graph,19,the mean free energy density,20,Overlap Di

8、stribution,自旋玻璃理论:空腔方法(cavity method),22,Lets define an artificial system!,23,Some examples of the grand free energy:2-body interactions,Beta=+infinity The max-2-SAT problem,Beta=1.25The +/- J spin-glassmodel on a randomregular graph ofdegree K=6,24,How to calculate the grand free energy? The cavity

9、 approach,25,26,N,N+2,27,Population Dynamics Simulation,28,Message-Passing Algorithms,30,3-SAT 问题,31,顶点覆盖问题,32,This graph is covered, but not optimally covered.,33,Minimal Vertex Cover Problem,A vertex cover of the global minimal size.Is a NP-hard optimization problem.Efficient algorithms for constr

10、ucting near-optimal solutions for a given graph.,34,There are many optimal solutions for a given graph,35,Three types of vertices: vertices that are always covered (frozen vertices, ) vertices that are always uncovered(frozen vertices, ) vertices that are covered in somesolutions and uncovered in th

11、eremaining solutions(unfrozen vertices, ),36,Mean-field analysis of the minimal vertex cover problemon a random graph,37,自洽的空穴场方法,覆盖还是不覆盖?,The vertex cover problem,38,=,always uncovered,always covered,unfrozen,Weigt, Hartmann, PRL (2000), PRE (2001),39,New vertex un-covered,New vertex partially cove

12、red,New vertex always covered,40,Mean-field theory result is lower than experimental values for c e=2.7183,2.7183,41,假定的相空间结构,42,引入参数 y,43,44,45,46,同样的消息传递的算法可以用于解决神经网络,信息系统,满足性问题,中的许多计算困难,47,Program and School in Beijing 2008,ICTP-ITP Spring School on “Statistical Physics and Interdisciplinary Applications” March 03-14, 2008KITPC Program “Collective Dynamics in Information Systems” March 01-April 15, 2008,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号