熔体的结构课件.ppt

上传人:牧羊曲112 文档编号:1593571 上传时间:2022-12-09 格式:PPT 页数:92 大小:1.40MB
返回 下载 相关 举报
熔体的结构课件.ppt_第1页
第1页 / 共92页
熔体的结构课件.ppt_第2页
第2页 / 共92页
熔体的结构课件.ppt_第3页
第3页 / 共92页
熔体的结构课件.ppt_第4页
第4页 / 共92页
熔体的结构课件.ppt_第5页
第5页 / 共92页
点击查看更多>>
资源描述

《熔体的结构课件.ppt》由会员分享,可在线阅读,更多相关《熔体的结构课件.ppt(92页珍藏版)》请在三一办公上搜索。

1、第一节 熔体的结构,一、对熔体的一般认识二、硅酸盐熔体结构聚合物理论,一、对熔体结构的一般认识1晶体与液体的体积密度相近。 当晶体熔化为液体时体积变化较小,一般不超过10(相当于质点间平均距离增加3左右);而当液体气化时,体积要增大数百倍至数千倍(例如水增大1240倍)。2晶体的熔解热不大,比液体的气化热小得多。 Na晶体 Zn晶体 冰熔融热 (kJ/mol) 2.51 6.70 6.03而水的气化热为40.46kJmol。这说明晶体和液体内能差别不大,质点在固体和液体中的相互作用力是接近的。,表31 几种金属固、液态时的热容值,3固液态热容量相近(表31) 。 表明质点在液体中的热运动性质(

2、状态)和在固体中差别不大,基本上仍是在平衡位置附近作简谐振动。 4. X射线衍射图相似(图31) 。 液体衍射峰最高点的位置与晶体相近,表明了液体中某一质点最邻近的几个质点的排列形式与间距和晶体中的相似。液体衍射图中的衍射峰都很宽阔,这是和液体质点的有规则排列区域的高度分散有关。由此可以认为,在高于熔点不太多的温度下,液体内部质点的排列并不是象气体那样杂乱无章的,相反,却是具有某种程度的规律性。这体现了液体结构中的近程有序和远程无序的特征。,图31 不同聚集状态物质的X射线衍射强度 随入射角度变化的分布曲线,综上所述: 液体是固体和气体的中间相,液体结构在气化点和凝固点之间变化很大,在高温(接

3、近气化点)时与气体接近,在稍高于熔点时与晶体接近。 由于通常接触的熔体多是离熔点温度不太远的液体,故把熔体的结构看作与晶体接近更有实际意义。,关于液体的结构理论有,液体的近程有序结构理论 1924年,佛仑克尔提出,解释了液体的流动性。 “核前群”理论 可以解释液体的许多物化性质,如温度升高,电导率上升。聚合物理论,二、硅酸盐熔体结构,1.基本结构单元 SiO4 四面体2.基本结构单元在熔体中存在状态聚合体基本结构单元在熔体中组成形状不规则、大小不同的聚合离子团(或络阴离子团)在这些离子团间存在着聚合解聚的平衡。3.影响聚合物聚合程度的因素硅酸盐熔体中各种聚合程度的聚合物浓度(数量)受组成和温度

4、两个因素的影响。,表32 硅酸盐聚合结构,图32 某一硼硅酸盐熔体中聚合物的分布随温度的变化,第二节 熔体的性质,一、粘度 粘度的含义、粘度与温度的关系、粘度与组成的关系二、表面张力 表面张力的含义、表面张力与温度的关系、表面张力与组成的关系,一、粘度 粘度是流体(液体或气体)抵抗流动的量度。当液体流动时:FS dv/dx (31)式中F两层液体间的内摩擦力;S两层液体间的接触面积;dv/dx垂直流动方向的速度梯度;比例系数,称为粘滞系数,简称粘度。,因此,粘度物理意义是指单位接触面积、单位速度梯度下两层液体间的内摩擦力。粘度单位是Pas(帕秒)。1Pas1Ns/ m210dynescm210

5、 P(泊)或1dPas(分帕秒)1P(泊)。粘度的倒数称液体流动度,即=1/。,影响熔体粘度的主要因素是温度和化学组成。硅酸盐熔体在不同温度下的粘度相差很大,可以从102变化至1015 Pas;组成不同的熔体在同一温度下的粘度也有很大差别。在硅酸盐熔体结构中,有聚合程度不同的多种聚合物交织而成的网络,使得质点之间的移动很困难,因此硅酸盐熔体的粘度比一般液体高得多,如表33所示。,表33 几种熔体的粘度,粘度的测定: 硅酸盐熔体的粘度相差很大,从1021015Pas,因此不同范围的粘度用不同方法测定1071015 Pas:拉丝法。根据玻璃丝受力作用的伸长速度来确定。10107 Pas:转筒法。利

6、用细铂丝悬挂的转筒浸在熔体内转动,悬丝受熔体粘度的阻力作用扭成一定角度,根据扭转角的大小确定粘度。100.51.3105 Pas:落球法。根据斯托克斯沉降原理,测定铂球在熔体中下落速度求出。小于102 Pas:振荡阻滞法。利用铂摆在熔体中振荡时,振幅受阻滞逐渐衰减的原理测定。,1粘度一温度关系(1) 弗仑格尔公式 A1u/kT1/A2u/kT logAB/T (32)式中 u质点粘滞活化能;k波尔兹曼常数;T绝对温标;A1 、 A2 、 A与熔体组成有关的常数。,但这个公式假定粘滞活化能只是和温度无关的常数,所以只能应用于简单的不缔合的液体或在一定温度范围内缔合度不变的液体。对于硅酸盐熔体在较

7、大温度范围时,斜率会发生变化,因而在较大温度范围内以上公式不适用。如图33是钠钙硅酸盐玻璃熔体粘度与温度的关系。,图33钠钙硅酸盐玻璃熔体粘度与温度的关系,(2)VFT公式(VogelFulcherTammann公式) (33) 式中 A、B、T0均是与熔体组成有关的常数。,3) 特征温度,图34 某些熔体的粘度温度曲线,a.应变点: 粘度相当于 1013Pas的温度,在该温度,粘性流动事实上不复存在,玻璃在该温度退火时不能除去其应力。b.退火点(Tg): 粘度相当于1012 Pas的温度,是消除玻璃中应力的上限温度,也称为玻璃转变温度。,c.变形点:粘度相当于10101010.5Pas的温度

8、,是指变形开始温度,对应于热膨胀曲线上最高点温度,又称为膨胀软化点。d.Litteleton软化点:粘度相当于4.5106Pas的温度,它是用 0.550.75mm直径,23cm长的玻璃纤维在特制炉中以min速率加热,在自重下达到每分钟伸长一毫米时的温度。,e.操作点 : 粘度相当于104Pas时的温度,是玻璃成形的温度。f.成形温度范围: 粘度相当于103107Pas的温度。指准备成形操作与成形时能保持制品形状所对应的的温度范围。 g.熔化温度:粘度相当于10Pas的温度。在此温度下,玻璃能以一般要求的速度熔化。玻璃液的澄清、均化得以完成。,粘度组成关系(1) O/Si比硅酸盐熔体的粘度首先

9、取决于硅氧四面体网络的聚合程度,即随O/Si比的上升而下降,见表34。,表34 熔体中O/Si比值与结构及粘度的关系,(2)一价碱金属氧化物,通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度(图35) 。这些正离子由于电荷少、半径大、和O2的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。,图35 网络改变剂氧化物对熔融石英粘度的影响,=Li2O-SiO2 1400 ;K2O-SiO2 1600;=BaO-SiO2 1700,图36 Na2OSi2O系统中Na2O含量对粘滞活化能u

10、的影响,Na2O(mol%),图37 简单碱金属硅酸盐系统(2OSiO2)中碱金属离子R对粘度的影响,在简单碱金属硅酸盐系统中,碱金属离子R对粘度的影响与本身含量有关(图3-7) 。1)当2O含量较低时(O/Si较低),熔体中硅氧负离子团较大,对粘度起主要作用的是四面体SiO4间的键力。这时,加入的正离子的半径越小,降低粘度的作用越大,其次序是LiNaRbCs。这是由于R除了能提供“游离”氧,打断硅氧网络以外,在网络中还对SiOSi键有反极化作用,减弱了上述键力。Li离子半径最小,电场强度最强,反极化作用最大,故它降低粘度的作用最大。,2)当熔体中2O含量较高(O/Si比较高)时,则熔体中硅氧

11、负离子团接近最简单的SiO4形式,同时熔体中有大量2-存在,SiO4四面体之间主要依靠RO键力连接,这时作用力矩最大的Li+就具有较大的粘度。在这种情况下,2O对粘度影响的次序是Li+Na+ 。,(3)二价金属氧化物,二价碱土金属氧化物对粘度影响:一方面和碱金属离子一样,能使硅氧负离子团解聚使粘度降低;另一方面,它们的电价较高而半径又不大,因此其离子势Z/r较+的大,能夺取硅氧负离子团中的2-来包围自己,导致硅氧负离子团聚合。综合这两个相反效应,2+降低粘度的次序是Ba2+Sr2+Ca2+g2+,系统粘度次序为Ba2+Sr2+Ca2+g2+ 见图38。,图38 二价阳离子对硅酸盐熔体粘度的影响

12、,(4)高价金属氧化物,一般说来,在熔体中引入SiO2、Al2O3、ZrO2、ThO2等氧化物时,因这些阳离子电荷多,离子半径又小,作用力大,总是倾向于形成更为复杂巨大的复合阴离子团,使粘滞活化能变大,从而导致熔体粘度增高。,(5)阳离子配位数 -硼反常现象,在硅酸盐Na2OSiO2系统中: 1)当B2O3含量较少时,Na2O/ B2O31,结构中”游离”氧充足,B3以BO4四面体状态加入到SiO4四面体网络,将断开的网络重新连接起来,结构趋于紧密,粘度随含量升高而增加;2)当Na2O/ B2O3 约为1时(B2O3含量约为15),B3形成BO4四面体最多,粘度达到最高点;3)B2O3含量继续

13、增加,较多量的B2O3引入使Na2O/ B2O31,“游离”氧不足,B3开始处于层状BO3中,使结构趋于疏松,粘度又逐步下降。,图39 16Na2OxB2O3(84x)SiO2 系统玻璃中 560时的粘度变化,(6)混合碱效应,熔体中同时引入一种以上的2O或 RO时,粘度比等量的一种2或RO高,称为“混合碱效应”,这可能和离子的半径、配位等结晶化学条件不同而相互制约有关。,(7)离子极化的影响,离子间的相互极化对粘度也有重要影响。由于极化使离子变形,共价键成分增加,减弱了SiO键力,温度一定时,引入等量的具有18电子层结构的二价副族元素离子Zn2+、Cd2+、Pb2+等较引入含8电子层结构的碱

14、土金属离子更能降低系统的粘度;当粘度一定时,系统的温度会更低。 18Na2O12RO70SiO2玻璃,当1012Pas时温度是 8电子结构 T() 18电子结构 T() 四周期 CaO 533 ZnO 513五周期 SrO 511 CdO 487六周期 BaO 482 PbO 422,(8)其它化合物,CaF2能使熔体粘度急剧下降,其原因是F的离子半径与O2的相近,较容易发生取代,但F只有一价,将原来网络破坏后难以形成新网络,所以粘度大大下降。稀土元素氧化物如氧化镧、氧化铈等,以及氯化物、硫酸盐在熔体中一般也起降低粘度的作用。 综上所述,加入某一种化合物所引起粘度的改变既取决于加入的化合物的本

15、性,也取决于原来基础熔体的组成。,二、表面张力,表面张力的物理意义为:作用于表面单位长度上与表面相切的力,单位是N/m。,通常将熔体与另一相接触的相分界面上(一般另一相指空气)在恒温、恒容条件下增加一个单位新表面积时所作的功,称为比表面能,简称表面能,单位为J/m2,简化后其因次为N/m。 熔体的表面能和表面张力的数值与因次相同(但物理意义不同),熔体表面能往往用表面张力来代替。表面张力以表示之。 水的表面张力约为7010-3N/m左右,熔融盐类为100N/m左右,硅酸盐熔体的表面张力通常波动在(220380)10-3N/m范围内,与熔融金属的表面张力数值相近,随组成与温度而变化. 见表35。

16、,表35 熔体的表面张力(103 N/m),1表面张力与温度的关系,一般规律: 温度升高,质点热运动增加,体积膨胀,相互作用变为松弛,表面张力降低。 在高温及低温区,表面张力均随温度的增加而减小,二者几乎成直线关系,即: 0(1bT) (35)式中 b与成分有关的经验常数; 0 一定条件下开始的表面张力值; T温度变动值。,图310 钾铅硅酸盐玻璃的表面张力与温度的关系,温度反常现象,对PbOSiO2系统玻璃,其表面张力随温度升高而略微变大,温度系数为正值。一般含有表面活性物质的系统也出现此正温度系数,这可能与在较高温度下出现“解吸”过程有关。,对硼酸盐熔体,随着碱含量减少,表面张力的温度系数

17、由负逐渐接近零值,当碱含量再减少时d/dT也将出现正值。这是由于温度升高时,熔体中各组分的活动能力增强,扰乱了熔体表面BO3平面基团的整齐排列,致使表面张力增大。B2O3熔体在1000左右的d/dT0.04103Nm。,2表面张力与组成的关系,结构类型相同的离子晶体,其晶格能越大,则其熔体的表面张力也越大;其单位晶胞边长越小,熔体的表面张力也越大。总的说来,熔体内部质点之间的相互作用力愈大,则表面张力也愈大。,O/Si比,一般说O/Si愈小,熔体中复合阴离子团愈大,e/r值变小(e是复合阴离子团所带的电荷,r是复合阴离子团的半径) ,相互间作用力愈小,因此这些复合阴离子团就部分地被排挤到熔体表

18、面层,使表面张力降低。碱金属离子(图311) 一价金属阳离子以断网为主,它的加入能使复合阴离子团离解,由于复合阳离子团的r减小使e/r的值增大,相互间作用力增加,表面张力增大。L12OSiO2Na2OSiO2K2OSiO2Cs2OSiO2,图312 300时R2OSiO2系统玻璃与成分的关系表面张力,图311 Na2OSiO2系统熔体成分对表面张力的影响,290,200,250,300,350,0,Li2O-SiO2,Na2O-SiO2,K2O-SiO2,表36 氧化物对表面张力的影响,3.气体介质对表面张力的影响,非极性气体如干燥的空气、N2、H2、He等对熔体的表面张力基本上不影响,而极性

19、气体如水蒸汽、SO2、NH3、HCl等对熔体表面张力影响较大,通常使表面张力有明显的降低,而且介质的极性愈强,表面张力降低得也愈多,即与气体的偶极矩成正比。特别在低温时(如 550左右),此现象较明显。当温度升高时,由于气体被吸收能力降低,气氛的影响同时减小,在温度超过850或更高时,此现象将完全消失。,此外气体介质的性质对熔体的表面张力有强烈影响。一般说,还原气氛下熔体的表面张力较氧化气氛下大20。这对于熔制棕色玻璃时色泽的均匀性有着重大意义,由于表面张力的增大,玻璃熔体表面趋于收缩,这样便不断促使新的玻璃液达到表面而起到混合搅拌作用。,第三节 玻璃的通性和玻璃的转变,一、玻璃的通性二、玻璃

20、的转变,一、 玻璃的通性,1各向同性 2介稳性 3由熔融态向玻璃态转化的过程是可逆的与渐变的,在一定的温度范围内完成,无固定熔点。 4由熔融态向玻璃态转化时物理、化学性质随温度变化的连续性 5物理、化学性质随成分变化的连续性,图313 物质体积与内能随温度变化示意图,图314 玻璃性质随温度的变化,a,b,c,d,a,b,c,d,d”,c”,b”,a”,Tg,Tf,温度,性质,图3-15 R2O-SiO2系玻璃R2O含量与分子体积的关系 1-Li2O; 2-Na2O; 3-K2O,二、玻璃的转变,不同物质的熔点TM和玻璃转变温度Tg(液态一一玻璃态的温度)之间呈简单线性关系。即: Tg/TM2

21、/30.667 (36)则 Sg/SM1/30.33 (37) qq0expEaRTg (38)式中 Ea与玻璃转变有关的活化能; R气体常数; q0常数。,图3-16 一些化合物的熔点(TM)和转变温度(Tg)的关系,图317 冷却速率对玻璃转变的影响,第四节 玻璃的形成,1形成玻璃的物质及方法2玻璃形成的热力学条件3玻璃形成的动力学条件4玻璃形成的结晶化学条件 (1)复合阴离子团大小与排列方式 (2)键强 (3)键型,1形成玻璃的物质及方法,当今普遍认为,只要冷却速率足够快,几乎任何物质都能形成玻璃,参见表37、38。 目前形成玻璃的方法有很多种,总的说来分为熔融法和非熔融法。熔融法是形成

22、玻璃的传统方法,即玻璃原料经加热、熔融和在常规条件下进行冷却而形成玻璃态物质,在玻璃工业生产中大量采用这种方法。此法的不足之处是冷却速率较慢,工业生产一般为4060/h,实验室样品急冷也仅为110/s,这样的冷却速率不能使金属、合金或一些离子化合物形成玻璃。,表37 由熔融法形成玻璃的物质,表38 由非熔融法形成玻璃的物质,2玻璃形成的热力学条件,熔融体是物质在液相温度以上存在的一种高能量状态。随着温度降低,熔体释放能量大小不同,可以有三种冷却途径:(1)结晶化,即有序度不断增加,直到释放全部多余能量而使整个熔体晶化为止。(2)玻璃化,即过冷熔体在转变温度Tg硬化为固态玻璃的过程。(3)分相,

23、即质点迁移使熔体内某些组成偏聚,从而形成互不混溶的组成不同的两个玻璃相。,表39 几种硅酸盐晶体与玻璃体的生成热,3玻璃形成的动力学条件,析晶分为晶核生成与晶体长大两个过程。均态核化:熔体内部自发成核。非均态核化:由表面、界面效应,杂质、或引入晶核剂等各种因素支配的成核过程。晶核生成速率IV是指单位时间内单位体积熔体中所生成的晶核数目(个/cm3s);晶体生长速率u是指单位时间内晶体的线增长速率(cm/s)。Iv与u均与过冷度(TTMT)有关(TM为熔点)。图312称为物质的析晶特征曲线。由图可见,IV与u曲线上都存在极大值。,图3-12 成核、生长速率与过冷度的关系,图3-13 析晶体积分数

24、为10-6时具有不同熔点物质的T-T-T曲线,A-Tm=356.6K B-Tm=316.6K C-Tm=276.6K,时间(s),过冷度(K),实验证明:当晶体混乱地分布于熔体中时,晶体的体积分数(晶体体积玻璃总体积V/V)为106时,刚好为仪器可探测出来的浓度。根据相变动力学理论,通过式(39)估计防止一定的体积分数的晶体析出所必须的冷却速率。 VV /3 Ivu3t4 (39)式中 V一析出晶体体积;V熔体体积; Iv一成核速率; u晶体生长速率; t一时间。,4 玻璃形成的结晶化学条件,(1)复合阴离子团大小与排列方式 从硅酸盐、硼酸盐、磷酸盐等无机熔体转变为玻璃时,熔体的结构含有多种负

25、离子集团,这些集团可能时分时合。这种大型负离子集团可以看作由不等数目的SiO44以不同的连接方式歪扭地聚合而成,宛如歪扭的链状或网络结构。 不同OSi比对应着一定的聚集负离子团结构,形成玻璃的倾向大小和熔体中负离子团的聚合程度有关。聚合程度越低,越不易形成玻璃;聚合程度越高,特别当具有三维网络或歪扭链状结构时,越容易形成玻璃。,硼酸盐、锗酸盐、磷酸盐等无机熔体中,也可采用类似硅酸盐的方法,根据O/B、O/Ge、O/P比来粗略估计负离子集团的大小。根据实验,形成玻璃的O/B、O/Si、O/Ge、O/P比有最高限值,如表311。这个限值表明熔体中负离子集团只有以高聚合的歪曲链状或环状方式存在时,方

26、能形成玻璃。,表311 形成硼酸盐、硅酸盐等玻璃的OB、OSi等比值的最高限值,(2)键强,孙光汉于1947年提出氧化物的键强是决定其能否形成玻璃的重要条件,他认为可以用元素与氧结合的单键强度大小来判断氧化物能否生成玻璃根据单键能的大小,可将不同氧化物分为以下三类: l)玻璃网络形成体(其中正离子为网络形成离子),其单键强度335kJmol。这类氧化物能单独形成玻璃。,2)网络改变体(正离子称为网络改变离子),其单键强度250kJ/mol。这类氧化物不能形成玻璃。但能改变网络结构,从而使玻璃性质改变。,3)网络中间体(正离子称为网络中间离子),其单键强度介于250335kJ/mol。这类氧化物

27、的作用介于玻璃形成体和网络改变体两者之间。罗生(Rawson)进一步发展了孙氏理论,提出用单键强度除以各种氧化物的熔点的比率来衡量玻璃形成的倾向。这样,单键强度越高,熔点越低的氧化物越易于形成玻璃。,表312 一些氧化物的单键强度与形成玻璃的关系,(3)键型。,离子键化合物在熔融状态以单独离子存在,流动性很大,凝固时靠静电引力迅速组成晶格。离子键作用范围大,又无方向性,且离子键化合物具有较高的配位数(6、8),离子相遇组成晶格的几率较高,很难形成玻璃。 金属键物质,在熔融时失去联系较弱的电子,以正离子状态存在。金属键无方向性并在金属晶格内出现最高配位数(12),原子相遇组成晶格的几率最大,最不

28、易形成玻璃. 纯粹共价键化合物多为分子结构。在分子内部,由共价键连接,分子间是无方向性的范德华力。一般在冷却过程中质点易进入点阵而构成分子晶格。 因此以上三种键型都不易形成玻璃。,当离子键和金属键向共价键过渡时,通过强烈的极化作用,化学键具有方向性和饱和性趋势,在能量上有利于形成一种低配位数(3、4)或一种非等轴式构造,有sp电子形成杂化轨道,并构成键和键,称为极性共价键。 既具有共价键的方向性和饱和性、不易改变键长和键角的倾向,促进生成具有固定结构的配位多面体,构成玻璃的近程有序; 又具有离子键易改变键角、易形成无对称变形的趋势,促进配位多面体不按一定方向连接的不对称变形,构成玻璃远程无序的

29、网络结构。 因此极性共价键的物质比较易形成玻璃态。,金属键向共价键过渡的混合键称为金属共价键。 在金属中加入半径小电荷高的半金属离子(Si4+、P5+、B3+等)或加入场强大的过渡元素,能对金属原子产生强烈的极化作用,形成spd或spdf杂化轨道,形成金属和加入元素组成的原子团,类似于SiO4四面体,也可形成金属玻璃的近程有序, 但金属键的无方向性和无饱和性则使这些原子团之间可以自由连接,形成无对称变形的趋势从而产生金属玻璃的远程无序。 因此金属共价键的物质比较易形成玻璃态。,综上所述,形成玻璃必须具有离子键或金属键向共价键过渡的混合键型。 一般地说阴、阳离子的电负性差x约在1.52.5之间;

30、其中阳离子具有较强的极化本领;单键强度(MO)335kJ/mol;成键时出现sp电子形成杂化轨道。这样的键型在能量上有利于形成一种低配位数的负离子团构造或结构键,易形成无规则的网络,因而形成玻璃倾向很大。,第四节 玻璃的形成,1形成玻璃的物质及方法2玻璃形成的热力学条件3玻璃形成的动力学条件4玻璃形成的结晶化学条件 (1)复合阴离子团大小与排列方式 (2)键强 (3)键型,1形成玻璃的物质及方法,当今普遍认为,只要冷却速率足够快,几乎任何物质都能形成玻璃,参见表37、38。 目前形成玻璃的方法有很多种,总的说来分为熔融法和非熔融法。熔融法是形成玻璃的传统方法,即玻璃原料经加热、熔融和在常规条件

31、下进行冷却而形成玻璃态物质,在玻璃工业生产中大量采用这种方法。此法的不足之处是冷却速率较慢,工业生产一般为4060/h,实验室样品急冷也仅为110/s,这样的冷却速率不能使金属、合金或一些离子化合物形成玻璃。,表37 由熔融法形成玻璃的物质,表38 由非熔融法形成玻璃的物质,2玻璃形成的热力学条件,熔融体是物质在液相温度以上存在的一种高能量状态。随着温度降低,熔体释放能量大小不同,可以有三种冷却途径:(1)结晶化,即有序度不断增加,直到释放全部多余能量而使整个熔体晶化为止。(2)玻璃化,即过冷熔体在转变温度Tg硬化为固态玻璃的过程。(3)分相,即质点迁移使熔体内某些组成偏聚,从而形成互不混溶的

32、组成不同的两个玻璃相。,表39 几种硅酸盐晶体与玻璃体的生成热,3玻璃形成的动力学条件,析晶分为晶核生成与晶体长大两个过程。均态核化:熔体内部自发成核。非均态核化:由表面、界面效应,杂质、或引入晶核剂等各种因素支配的成核过程。晶核生成速率IV是指单位时间内单位体积熔体中所生成的晶核数目(个/cm3s);晶体生长速率u是指单位时间内晶体的线增长速率(cm/s)。Iv与u均与过冷度(TTMT)有关(TM为熔点)。图312称为物质的析晶特征曲线。由图可见,IV与u曲线上都存在极大值。,图3-12 成核、生长速率与过冷度的关系,图3-13 析晶体积分数为10-6时具有不同熔点物质的T-T-T曲线,A-

33、Tm=356.6K B-Tm=316.6K C-Tm=276.6K,时间(s),过冷度(K),实验证明:当晶体混乱地分布于熔体中时,晶体的体积分数(晶体体积玻璃总体积V/V)为106时,刚好为仪器可探测出来的浓度。根据相变动力学理论,通过式(39)估计防止一定的体积分数的晶体析出所必须的冷却速率。 VV /3 Ivu3t4 (39)式中 V一析出晶体体积;V熔体体积; Iv一成核速率; u晶体生长速率; t一时间。,4 玻璃形成的结晶化学条件,(1)复合阴离子团大小与排列方式 从硅酸盐、硼酸盐、磷酸盐等无机熔体转变为玻璃时,熔体的结构含有多种负离子集团,这些集团可能时分时合。这种大型负离子集团

34、可以看作由不等数目的SiO44以不同的连接方式歪扭地聚合而成,宛如歪扭的链状或网络结构。 不同OSi比对应着一定的聚集负离子团结构,形成玻璃的倾向大小和熔体中负离子团的聚合程度有关。聚合程度越低,越不易形成玻璃;聚合程度越高,特别当具有三维网络或歪扭链状结构时,越容易形成玻璃。,硼酸盐、锗酸盐、磷酸盐等无机熔体中,也可采用类似硅酸盐的方法,根据O/B、O/Ge、O/P比来粗略估计负离子集团的大小。根据实验,形成玻璃的O/B、O/Si、O/Ge、O/P比有最高限值,如表311。这个限值表明熔体中负离子集团只有以高聚合的歪曲链状或环状方式存在时,方能形成玻璃。,表311 形成硼酸盐、硅酸盐等玻璃的

35、OB、OSi等比值的最高限值,(2)键强,孙光汉于1947年提出氧化物的键强是决定其能否形成玻璃的重要条件,他认为可以用元素与氧结合的单键强度大小来判断氧化物能否生成玻璃根据单键能的大小,可将不同氧化物分为以下三类: l)玻璃网络形成体(其中正离子为网络形成离子),其单键强度335kJmol。这类氧化物能单独形成玻璃。,2)网络改变体(正离子称为网络改变离子),其单键强度250kJ/mol。这类氧化物不能形成玻璃。但能改变网络结构,从而使玻璃性质改变。,3)网络中间体(正离子称为网络中间离子),其单键强度介于250335kJ/mol。这类氧化物的作用介于玻璃形成体和网络改变体两者之间。罗生(R

36、awson)进一步发展了孙氏理论,提出用单键强度除以各种氧化物的熔点的比率来衡量玻璃形成的倾向。这样,单键强度越高,熔点越低的氧化物越易于形成玻璃。,表312 一些氧化物的单键强度与形成玻璃的关系,(3)键型。,离子键化合物在熔融状态以单独离子存在,流动性很大,凝固时靠静电引力迅速组成晶格。离子键作用范围大,又无方向性,且离子键化合物具有较高的配位数(6、8),离子相遇组成晶格的几率较高,很难形成玻璃。 金属键物质,在熔融时失去联系较弱的电子,以正离子状态存在。金属键无方向性并在金属晶格内出现最高配位数(12),原子相遇组成晶格的几率最大,最不易形成玻璃. 纯粹共价键化合物多为分子结构。在分子

37、内部,由共价键连接,分子间是无方向性的范德华力。一般在冷却过程中质点易进入点阵而构成分子晶格。 因此以上三种键型都不易形成玻璃。,当离子键和金属键向共价键过渡时,通过强烈的极化作用,化学键具有方向性和饱和性趋势,在能量上有利于形成一种低配位数(3、4)或一种非等轴式构造,有sp电子形成杂化轨道,并构成键和键,称为极性共价键。 既具有共价键的方向性和饱和性、不易改变键长和键角的倾向,促进生成具有固定结构的配位多面体,构成玻璃的近程有序; 又具有离子键易改变键角、易形成无对称变形的趋势,促进配位多面体不按一定方向连接的不对称变形,构成玻璃远程无序的网络结构。 因此极性共价键的物质比较易形成玻璃态。

38、,金属键向共价键过渡的混合键称为金属共价键。 在金属中加入半径小电荷高的半金属离子(Si4+、P5+、B3+等)或加入场强大的过渡元素,能对金属原子产生强烈的极化作用,形成spd或spdf杂化轨道,形成金属和加入元素组成的原子团,类似于SiO4四面体,也可形成金属玻璃的近程有序, 但金属键的无方向性和无饱和性则使这些原子团之间可以自由连接,形成无对称变形的趋势从而产生金属玻璃的远程无序。 因此金属共价键的物质比较易形成玻璃态。,综上所述,形成玻璃必须具有离子键或金属键向共价键过渡的混合键型。 一般地说阴、阳离子的电负性差x约在1.52.5之间;其中阳离子具有较强的极化本领;单键强度(MO)335kJ/mol;成键时出现sp电子形成杂化轨道。这样的键型在能量上有利于形成一种低配位数的负离子团构造或结构键,易形成无规则的网络,因而形成玻璃倾向很大。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号