必修2-第五章-专题突破-功能关系-----能量.doc

上传人:牧羊曲112 文档编号:1600178 上传时间:2022-12-10 格式:DOC 页数:21 大小:762KB
返回 下载 相关 举报
必修2-第五章-专题突破-功能关系-----能量.doc_第1页
第1页 / 共21页
必修2-第五章-专题突破-功能关系-----能量.doc_第2页
第2页 / 共21页
必修2-第五章-专题突破-功能关系-----能量.doc_第3页
第3页 / 共21页
必修2-第五章-专题突破-功能关系-----能量.doc_第4页
第4页 / 共21页
必修2-第五章-专题突破-功能关系-----能量.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《必修2-第五章-专题突破-功能关系-----能量.doc》由会员分享,可在线阅读,更多相关《必修2-第五章-专题突破-功能关系-----能量.doc(21页珍藏版)》请在三一办公上搜索。

1、专题突破功能关系能量守恒定律突破一功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的。(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。2.几种常见的功能关系及其表达式各种力做功对应能的变化定量的关系合力做功动能变化合力对物体做功等于物体动能的增量W合Ek2Ek1重力做功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且WGEpEp1Ep2弹簧弹力做功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性势能增加

2、,且W弹EpEp1Ep2只有重力、弹簧弹力做功机械能不变化机械能守恒E0非重力和弹力做功机械能变化除重力和弹力之外的其他力做正功,物体的机械能增加,做负功,机械能减少,且W其他E【例1】(2017全国卷,16)如图1,一质量为m、长度为l的均匀柔软细绳PQ竖直悬挂。用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距l。重力加速度大小为g。在此过程中,外力做的功为()图1A.mgl B.mglC.mgl D.mgl解析由题意可知,PM段细绳的机械能不变,MQ段细绳的重心升高了,则重力势能增加Epmgmgl,由功能关系可知,在此过程中,外力做的功为Wmgl ,故选项A正确,B、C、

3、D错误。答案A1.如图2所示,某滑翔爱好者利用无动力滑翔伞在高山顶助跑起飞,在空中完成长距离滑翔后安全到达山脚下。他在空中滑翔的过程中()图2A.只有重力做功B.重力势能的减小量大于重力做的功C.重力势能的减小量等于动能的增加量D.动能的增加量等于合力做的功解析由功能关系知,重力做功对应重力势能的变化,合外力做功对应物体动能的变化,选项D正确。答案D2.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000

4、 JC.重力势能减小了1 900 J D.重力势能减小了2 000 J解析由题可得:重力做功WG1 900 J,则重力势能减少1 900 J ,故选项C正确,D错误;由动能定理得,WGWfEk,克服阻力做功Wf100 J,则动能增加1 800 J,故选项A、B错误。答案C3.(2018天津理综,2)滑雪运动深受人民群众喜爱。某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中()图3A.所受合外力始终为零 B.所受摩擦力大小不变C.合外力做功一定为零 D.机械能始终保持不变解析运动员做匀速

5、圆周运动,所受合外力指向圆心,A项错误;由动能定理可知,合外力做功一定为零,C项正确;由运动员沿AB下滑过程中做匀速圆周运动,知运动员所受沿圆弧切线方向的合力为零,即摩擦力等于运动员的重力沿圆弧切线方向的分力,逐渐变小,B项错误;运动员动能不变,重力势能减少,所以机械能减少,D项错误。答案C突破二摩擦力做功与能量的转化1.两种摩擦力的做功情况比较 类别比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功Wfs相对,即相对滑动时产生的热量相同点正功、负功

6、、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功2.相对滑动物体能量问题的解题流程【例2】(多选)如图4所示,质量为M、长度为L的小车静止在光滑水平面上,质量为m的小物块(可视为质点)放在小车的最左端。现用一水平恒力F作用在小物块上,使小物块从静止开始做匀加速直线运动。小物块和小车之间的摩擦力为f,小物块滑到小车的最右端时,小车运动的距离为s。此过程中,以下结论正确的是()图4A.小物块到达小车最右端时具有的动能为(Ff)(Ls)B.小物块到达小车最右端时,小车具有的动能为fsC.小物块克服摩擦力所做的功为f(Ls)D.小物块和小车增加的机械能为Fs解析由动能定理可得,小物块到达小车

7、最右端时的动能Ek物W合(Ff)(Ls),A正确;小物块到达小车最右端时,小车的动能Ek车fs,B正确;小物块克服摩擦力所做的功Wff(Ls),C正确;小物块和小车增加的机械能为F(Ls)fL,D错误。答案ABC1.(多选)(2018江苏单科,7)如图5所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置。物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点。在从A到B的过程中,物块()图5A.加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功解析对物块受力分析,当弹簧处于压缩状态时,由牛顿第二定律可得

8、kxfma,x减小,a减小,当a0时,物块速度最大,此时,物块在O点左侧,选项B错误;从加速度a0处到O点过程,由牛顿第二定律得fkxma,x减小,a增大,当弹簧处于伸长状态时,由牛顿第二定律可得kxfma,x增大,a继续增大,可知物块的加速度先减小后增大,选项A正确;物块所受弹簧的弹力对物块先做正功,后做负功,选项C错误;从A到B的过程,由动能定理可得W弹Wf0,选项D正确。答案AD2.如图6所示,绷紧的传送带与水平面的夹角30,传送带在电动机的带动下始终保持v02 m/s的速率运行。现把一质量为m10 kg的工件(可看作质点)轻轻放在传送带的底端,经过1.9 s,工件被传送到h1.5 m的

9、高处。g取10 m/s2,求:图6(1)工件与传送带间的动摩擦因数;(2)电动机由于传送工件多消耗的电能。解析(1)传送带长s3 m工件速度达到v0前,做匀加速运动的位移s1 t1t1匀速运动的位移为ss1v0(tt1)解得加速运动的时间t10.8 s加速运动的位移s10.8 m所以加速度a2.5 m/s2由牛顿第二定律得mgcos mgsin ma解得。(2)从能量守恒的观点看,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对运动时摩擦力做功。在时间t1内,传送带运动的位移s传送带v0t11.6 m在时间t1内,工件相对传送带的位移s相对s传送带s10.8 m在时间

10、t1内,摩擦生热Qmgcos s相对60 J工件获得的动能Ekmv20 J工件增加的势能Epmgh150 J故电动机多消耗的电能WQEkEp230 J。答案(1)(2)230 J突破三能量守恒定律的应用1.对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。2.涉及弹簧的能量问题应注意两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:(1)能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒。(2)如果系统每个物体除弹簧弹力外所受合

11、外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同。【例3】如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高,质量m0.5 kg的篮球静止在弹簧正上方,底端距A点的高度h11.10 m,篮球静止释放测得第一次撞击弹簧时,弹簧的最大形变量x10.15 m,第一次反弹至最高点,篮球底端距A点的高度h20.873 m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x20.01 m,弹性势能为Ep0.025 J。若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球的形变,弹簧形变在弹性限度范围内。求:图7(1)弹簧的劲度系数;(2)篮球在运动

12、过程中受到的空气阻力;(3)篮球在整个运动过程中通过的路程;(4)篮球在整个运动过程中速度最大的位置。解析(1)篮球静止在弹簧上时,有mgkx20,解得k500 N/m(2)篮球从开始运动到第一次上升到最高点,由动能定理得mg(h1h2)f(h1h22x1)0代入数值解得f0.5 N(3)设篮球在整个运动过程中总路程s,由能量守恒定律得mg(h1x2)fsEp代入数值解得s11.05 m(4)球在首次下落过程中,合力为零处速度最大速度最大时弹簧形变量为x3mgfkx30在A点下方,离A点x30.009 m答案(1)500 N/m(2)0.5 N(3)11.05 m (4)第一次下落至A点下方0

13、.009 m处速度最大运用能量守恒定律解题的基本思路1.(2018江西南昌二模)如图8所示,光滑水平面AB与竖直面上的半圆形光滑固定轨道在B点衔接,BC为直径,一可看做质点的物块在A处压缩一轻质弹簧(物块与弹簧不连接),释放物块,物块被弹簧弹出后,经过半圆形轨道B点之后恰好能通过半圆轨道的最高点C。现在换用一个质量较小的另一物块,被同样压缩的弹簧由静止弹出,不计空气阻力。则更换后 ()图8A.物块不能到达C点B.物块经过C点时动能不变C.物块经过C点时的机械能增大D.物块经过B点时对轨道的压力减小解析物块从A到C过程,由能量守恒有Epmg2Rmv,可知质量减小,物块经过C点时动能增大,vC增大

14、,物块也能到达C点,故A、B错误;由能量守恒定律可知物块经过C点时的机械能不变均为Ep,故C错误;物块从A到B过程,由能量守恒有Epmv,在B点有FNmgm,解得FNmg,减小,故D正确。答案D2.(2019乐山模拟)如图9甲所示,在倾角为37足够长的粗糙斜面底端,一质量m1 kg的滑块压缩着一轻弹簧且锁定,两者不拴接,滑块可视为质点。t0时解除锁定,计算机通过传感器描绘出滑块的vt图象如图乙所示,其中Oab段为曲线,bc段为直线,在t10.1 s时滑块已上滑x0.2 m 的距离(g取10 m/s2,sin 370.6,cos 370.8)。求:图9(1)滑块离开弹簧后在图中bc段对应的加速度

15、大小a及动摩擦因数的大小;(2)t20.3 s和t30.4 s时滑块的速度v1、v2的大小;(3)弹簧锁定时具有的弹性势能Ep。解析(1)由题图乙知滑块在bc段做匀减速运动,加速度大小为a|10 m/s2根据牛顿第二定律得 mgsin 37mgcos 37ma 解得0.5。(2)根据速度时间公式得t20.3 s时的速度大小v1vcat,解得v10在t2之后滑块开始下滑,下滑时由牛顿第二定律得mgsin 37mgcos 37ma解得a2 m/s2从t2到t3做初速度为零的匀加速运动,t3时刻的速度为v2at0.2 m/s。(3)从0到t1时间内,由能量守恒定律得Epmgxsin 37mgxcos

16、 37mv解得Ep4 J。答案(1)10 m/s20.5(2)00.2 m/s(3)4 J科学思维系列满分指导:大题小做“三步曲”第一步:读题审题,做到一“看”二“读”三“思”1.看题“看题”是从题目中获取信息的最直接方法,一定要全面、细心,看题时不要急于求解,对题中关键的词语要多加思考,搞清其含义,对特殊字、句、条件要用着重号加以标注;不能漏看、错看或看不全题目中的条件,要重点看清题中隐含的物理条件、括号内的附加条件等。2.读题 “读题”就是默读试题,是物理信息内化的过程,它能解决漏看、错看等问题。不管试题难易如何,一定要怀着轻松的心情去默读一遍,逐字逐句研究,边读边思索、边联想,以弄清题中

17、所涉及的现象和过程,排除干扰因素,充分挖掘隐含条件,准确还原各种模型,找准物理量之间的关系。 3.思题“思题”就是充分挖掘大脑中所储存的知识信息,准确、全面、快速思考,清楚各物理过程的细节、内在联系、制约条件等,进而得出解题的全景图。 第二步:“拆分”运动过程 采用“拆分”的方法,按照物理事件发生的顺序,将复杂的运动“拆分”成若干个简单的子过程,即一个个的小题。第三步:选规律,列方程针对各子过程不同的运动特点,应用不同的物理规律。只要掌握了物体各阶段运动过程的特点,按程序一步步地列出相关的方程,就可以把问题简化,从而得到解决。【典例】(12分)如图10,半径R0.5 m的光滑圆弧轨道ABC与足

18、够长的粗糙轨道CD在C处平滑连接,O为圆弧轨道ABC的圆心,B点为圆弧轨道的最低点,半径OA、OC与OB的夹角分别为53和37。将一个质量m0.5 kg的物体(视为质点)从A点左侧高为h0.8 m处的P点水平抛出,恰从A点沿切线方向进入圆弧轨道。已知物体与轨道CD间的动摩擦因数0.8,重力加速度g取10 m/s2,sin 370.6,cos 370.8。求:图10(1)物体水平抛出时的初速度v0的大小;(2)物体经过B点时,对圆弧轨道压力FN的大小;(3)物体在轨道CD上运动的距离s。解题指导问题拆分大题小做化繁为易第(1)问可折分为3个子问题恰从A点沿切线方向进入圆弧轨道时,竖直速度是多大?

19、从A点沿切线方向进入圆弧轨道时水平速度与竖直速度存在什么关系? 过A点时物体的水平速度是多大?第(2)问可拆分为2个子问题物体通过B点时的速度是多大? 写出物体通过B点时功与动能的关系式。第(3)问可拆分为2个子问题判断物体在轨道CD上是否存在往返运动。求物体沿CD向上运动的位移。规范解答:(1)从P到A:竖直方向自由落体v2gh(1分)在A点由几何关系得:vxvytan 37(1分)水平方向匀速运动:v0vx3 m/s(1分)(2)从P到B机械能守恒mg(hRRcos 53)mvmv(2分)过B点时,对物体受力分析,由牛顿第二定律得FNmgm(2分)由牛顿第三定律,对圆弧轨道压力大小FNFN

20、34 N(1分)(3)因mgcos 37mgsin 37,物体沿轨道CD向上做匀减速运动,速度减为零后不再下滑。(1分)由B上滑至最高点的过程,由功能关系得mgR(1cos 37)(mgsin 37mgcos 37)smv(2分)代入数据解得s1.09 m(1分)答案(1)3 m/s(2)34 N(3)1.09 m多过程问题的解题技巧(1)“合”初步了解全过程,构建大致的运动图景。(2)“分”将全过程进行分解,分析每个过程的规律。(3)“合”找到子过程的联系,寻找解题方法。课时作业(时间:40分钟)基础巩固练1.如图1所示,一个质量为m的铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部

21、时,轨道所受压力为铁块重力的1.5倍,重力加速度为g,则此过程中铁块损失的机械能为()图1A.mgR B.mgR C.mgR D.mgR答案D2.(多选)如图2所示,水平传送带由电动机带动,并始终保持以速度v匀速运动,现将质量为m的物块由静止放在传送带的左端,过一会儿物块能保持与传送带相对静止,设物块与传送带间的动摩擦因数为,对于这一过程,下列说法正确的是()图2A.摩擦力对物块做的功为0.5mv2B.物块对传送带做功为0.5mv2C.系统摩擦生热为0.5mv2D.电动机多做的功为mv2解析对物块运用动能定理,摩擦力做的功等于物块动能的增加,即0.5mv2,故选项A正确;传送带的位移是物块位移

22、的两倍,所以物块对传送带做功的绝对值是摩擦力对物块做功的两倍,即为mv2,故选项B错误;电动机多做的功就是传送带克服摩擦力做的功,也为mv2,故选项D正确;系统摩擦生热等于摩擦力与相对位移的乘积,故选项C正确。答案ACD3.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图3所示。已知物体与水平面间的动摩擦因数为,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()图3A.mvmg(sx) B.mvmgxC.mgs D.mg(sx)解析根据功的定义式可知物体克服摩擦力做功为Wfmg(sx),由能量守恒定律可得mv

23、W弹Wf,W弹mvmg(sx),故选项A正确。答案A4.(多选)如图4所示,质量为m的物体以某一速度冲上一个倾角为37的斜面,其运动的加速度的大小为0.9g。这个物体沿斜面上升的最大高度为H,则在一这过程中()图4A.物体的重力势能增加了0.9mgHB.物体的重力势能增加了mgHC.物体的动能损失了0.5mgHD.物体的机械能损失了0.5mgH解析在物体上滑到最大高度的过程中,重力对物体做负功,故物体的重力势能增加了mgH,故A错误;B正确;物体所受的合力沿斜面向下,其合力做的功为WFma1.5mgH,故物体的动能损失了1.5mgH,故C错误;设物体受到的摩擦力为f,由牛顿第二定律得mgsin

24、 37fma,解得f0.3mg。摩擦力对物体做的功为Wff0.5mgH,因此物体的机械能损失了0.5mgH,故D正确。答案BD5.(多选)将一长木板静止放在光滑的水平面上,如图5甲所示,一个小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。现将木板分成A和B两段,使B的长度和质量均为A的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v0由木板A的左端开始向右滑动,如图乙所示。若小铅块相对滑动过程中所受的摩擦力始终不变,则下列说法正确的是()图5A.小铅块将从木板B的右端飞离木板B.小铅块滑到木板B的右端前就与木板B保持相对静止C.甲、乙两图所示的过程中

25、产生的热量相等D.图甲所示的过程产生的热量大于图乙所示的过程产生的热量解析在图甲所示的小铅块运动过程中,小铅块与木板之间的摩擦力使整个木板一直加速,图乙中小铅块先使整个木板加速,运动到B部分上后A部分停止加速,只有B部分加速,加速度大于图甲中的对应过程,故图乙中小铅块与B木板将更早达到速度相等,所以小铅块还没有运动到B的右端,两者速度就已经相同,选项A错误,B正确;根据摩擦力乘相对位移等于产生的热量,图甲中的相对位移大小大于图乙中的相对位移大小,则图甲所示的过程产生的热量大于图乙所示的过程产生的热量,选项C错误,D正确。答案BD6. 如图6所示,一个质量为m60 kg的物体在沿固定斜面向上的恒

26、定外力F作用下,由静止开始从斜面的底端沿光滑斜面向上做匀加速直线运动,经过一段时间后外力F做的功为120 J,此后撤去外力F,物体又经过一段时间后回到出发点。若以地面为零势能面,则下列说法正确的是()图6A.在这个过程中,物体的最大动能小于120 JB.在这个过程中,物体的最大重力势能大于120 JC.在撤去外力F之后的过程中,物体的机械能等于120 JD.在刚撤去外力F时,物体的速率为2 m/s解析由题意可知,恒力F对物体做功120 J,则物体的机械能等于120 J。撤去F后,只有重力对物体做功,机械能守恒,所以物体回到出发点时的动能为120 J,选项A错误,C正确;物体运动到最高点的过程中

27、,由动能定理可得WFWG0,即重力做功为WGWF120 J,重力做负功,物体的最大重力势能等于120 J,选项B错误;由于物体向上运动的过程中重力对物体做负功,所以在刚撤去外力F时,物体的动能小于120 J,物体的速度v m/s2 m/s,选项D错误。答案C综合提能练7.(2018四川成都模拟)如图7甲所示,倾角30的足够长固定光滑斜面上,用平行于斜面的轻弹簧拉着质量m1 kg的物体沿斜面向上运动。已知物体在t1 s到t3 s这段时间的vt图象如图乙所示,弹簧的劲度系数k200 N/m,重力加速度g取10 m/s2。则在该段时间内()图7A.物体的加速度大小为2 m/s2B.弹簧的伸长量为3

28、cmC.弹簧的弹力做功为30 JD.物体的重力势能增加36 J解析根据速度图象的斜率表示加速度可知,物体的加速度大小为a1 m/s2,选项A错误;对斜面上的物体受力分析,受到竖直向下的重力mg、斜面的支持力和轻弹簧的弹力F,由牛顿第二定律,Fmgsin 30ma,解得F6 N。由胡克定律Fkx可得弹簧的伸长量x3 cm,选项B正确;在t1 s到t3 s这段时间内,物体动能增大Ekmvmv6 J,根据速度时间图象面积等于位移,可知物体向上运动位移s6 m,物体重力势能增加Epmgssin 3030 J;根据功能关系可知,弹簧弹力做功WEkEp36 J,选项C、D错误。答案B8.(2018全国卷,

29、18)如图8,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点。一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。重力加速度大小为g。小球从a点开始运动到其轨迹最高点,机械能的增量为()图8A.2mgR B.4mgR C.5mgR D.6mgR解析设小球运动到c点的速度大小为vc,则对小球由a到c的过程, 由动能定理有F3RmgRmv,又Fmg,解得vc2。小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速

30、度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为t2,在水平方向的位移大小为xgt22R。由以上分析可知,小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R,则小球机械能的增加量为EF5R5mgR,C正确,A、B、D错误。答案C9.(多选)(2019佛山高三检测)如图9所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长。现A由静止释放下降到最低点,两轻杆间夹角由60变为120,A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。则此下降过程

31、中()图9A.A的动能达到最大前,B受到地面的支持力小于mgB.A的动能最大时,B受到地面的支持力mgC.弹簧的弹性势能最大时,A的加速度方向竖直向上D.弹簧的弹性势能最大值为mgL解析A的动能最大时,设B和C受到地面的支持力大小均为F,此时整体在竖直方向受力平衡,可得2F3mg,所以Fmg,在A的动能达到最大前一直是加速下降,处于失重状态,所以B受到地面的支持力小于mg,故A错误,B正确;当A达到最低点时动能为零,此时弹簧的弹性势能最大,A的加速度方向向上,故C正确;A下落的高度为hLsin 60Lsin 30,根据功能关系可知,小球A的机械能全部转化为弹簧的弹性势能,即弹簧的弹性势能最大值

32、为EpmghmgL,故D错误。答案BC10.(2017全国卷,24)一质量为8.00104 kg的太空飞船从其飞行轨道返回地面。飞船在离地面高度1.60105 m 处以7.5103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2(结果保留2位有效数字)。(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。解析(1)飞船着地前瞬间的机械能为Ek0

33、mv式中,m和v0分别是飞船的质量和着地前瞬间的速率。由式和题给数据得Ek04.0108 J设地面附近的重力加速度大小为g,飞船进入大气层时的机械能为Ehmvmgh式中,vh是飞船在高度1.6105 m处的速度大小。由式和题给数据得Eh2.41012 J(2)飞船在高度h600 m处的机械能为Ehm(vh)2mgh由功能关系得WEhEk0式中,W是飞船从高度600 m处至着地瞬间的过程中克服阻力所做的功。由式和题给数据得W9.7108 J答案(1)4.0108 J2.41012 J(2)9.7108 J11.如图10甲为一个儿童电动小汽车的轨道传送接收装置,L1 m的水平直轨道AB与半径均为0

34、.4 m的竖直光滑螺旋圆轨道(O、O为圆心,C为最高点)相切于B,B为第2个圆与水平轨道的切点,OD与OB的夹角为60,接收装置为高度可调节的平台,EF为平台上一条直线,OEF在同一竖直平面内,装置切面图可抽象为图乙模型。质量为0.6 kg的电动小汽车以额定功率P6 W从起点A启动沿轨道运动一段时间(到达B点之前电动机停止工作),刚好能通过C点,之后沿圆弧从B运动至D点后抛出,沿水平方向落到平台E点,小汽车与水平直轨道AB的动摩擦因数为0.2,其余轨道均光滑,g10 m/s2(空气阻力不计,小汽车运动过程中可视为质点)。乙图10(1)求电动机工作时间;(2)要保证小汽车沿水平方向到达平台E点,

35、求平台调节高度H和EB的水平位移s2;(3)若抛出点D的位置可沿圆轨道调节,设OD与OB的夹角为,要保证小汽车沿水平方向到达平台E点,写出平台的竖直高度H、平台落点到抛出点的水平位移s1、角度的关系方程。解析(1)小汽车刚好过最高的C点,轨道对小汽车刚好无作用力mg对AC应用动能定理PtmgL2mgRmv0,t1.2 s(2)对从C到D,应用机械能守恒定律,得mg(RRsin 30)mvmvvD4 m/s,vDxvDsin 302 m/svDyvDcos 302 m/s将DE看成逆向平抛运动vDygt,t shgt20.6 mHhR(1cos 60)0.8 ms1vDxt0.4 ms2s1Rsin 600.6 m1.04 m(3)将DE看成逆向平抛运动tan 2,HhR(1cos )解得s1答案(1)1.2 s(2)0.8 m1.04 m(3)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号