第三章粗大误差(精)ppt课件.ppt

上传人:牧羊曲112 文档编号:1626664 上传时间:2022-12-11 格式:PPT 页数:31 大小:586.50KB
返回 下载 相关 举报
第三章粗大误差(精)ppt课件.ppt_第1页
第1页 / 共31页
第三章粗大误差(精)ppt课件.ppt_第2页
第2页 / 共31页
第三章粗大误差(精)ppt课件.ppt_第3页
第3页 / 共31页
第三章粗大误差(精)ppt课件.ppt_第4页
第4页 / 共31页
第三章粗大误差(精)ppt课件.ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《第三章粗大误差(精)ppt课件.ppt》由会员分享,可在线阅读,更多相关《第三章粗大误差(精)ppt课件.ppt(31页珍藏版)》请在三一办公上搜索。

1、第四章粗大误差,主讲:马冰,主要内容:,1、粗大误差的产生原因和特点:产生原因、主 要特点。2、可疑值处理的基本原则:直观判断、及时剔 除;增加测量次数、继续观察;用统计法判 别;保留不剔、确保安全。3、粗大误差的统计学判别方法:统计判别方法 的基本依据、常用的统计判别方法、判别粗 大误差应注意的几个问题。,第一节 粗大误差产生的原因,客观外界条件的原因,机械冲击、外界震动、电网供电电压突变、电磁干扰等测量条件意外地改变 ,引起仪器示值或被测对象位置的改变而产生粗大误差。,测量人员的主观原因,测量者工作责任性不强,工作过于疲劳,对仪器熟悉与掌握程度不够等原因,引起操作不当,或在测量过程中不小心

2、、不耐心、不仔细等,从而造成错误的读数或错误的记录。,测量仪器内部的突然故障,若不能确定粗大误差是由上述两个原因产生时,其原因可认为是测量仪器内部的突然故障。,第二节 可疑值处理的基本原则,一、直观判断,及时剔除,若某可疑值经分析确认是由于错读、错记、错误操作以及确实为测量条件发生意外的突然变化而得到的测量值,可以随时将该次测量得到的数据从测量记录中剔除。但在剔除时必须注明原因,不注明原因而随意剔除可疑值是不正确的。这种方法称为物理判别法,也叫直观判别法。,二、增加测量次数,继续观察,如果在测量过程中,发现可疑测量值又不能充分肯定它是异常值时,可以在维持等精密度测量条件的前提下,多增加一些测量

3、次数。根据随机误差的对称性,以后的测量很可能出现与上述结果绝对值相近仅符号相反的另一测量值,此时它们对测量结果的影响便会彼此近于抵消。,三、用统计方法进行判别,在测量完毕后,还不能确定可疑测量值是否为含有粗大误差的异常值时,可按照依据统计学方法导出的粗大误差判别准则进行判别、确定。,四、保留不剔,确保安全,利用上述三种原则还不能充分肯定的可疑值,为保险起见,一般以不剔除为好。,第三节粗大误差的统计判别方法,一、统计方法的基本思想,给定一个显著性水平,按一定分布确定一个临界值,凡超过这个界限的误差,就认为它不属于随机误差的范畴,而是粗大误差,该数据应予以剔除.,3准则 格拉布斯(Grubbs)准

4、则 狄克逊(Dixon)准则,二、 常用统计判别方法,1、莱因达准则 (3准则 ),对某个可疑数据 ,若,贝塞尔公式计算的标准差,样本数 n50 时适用,含有粗差,可剔除;否则予以保留,在n10的情形,用3准则剔除粗差注定失效.,1、莱因达准则 (3准则 ),含有粗差,可剔除;否则予以保留,查表获得,对某个可疑数据 ,若,贝塞尔公式计算的标准差,2、格拉布斯(Grubbs)准则,例 题,在检定杠杆千分尺的示值极限误差时,用五等标准量块重复测量了20次,20.002,20.000,20.000,20.001,20.000,19.998,20.000,20.001,19.998,20.002,20

5、.002,20.000,20.004,20.000,20.002,19.992,19.998,20.002,19.998。其中 为可疑数据,判断是否该剔除?,【解】,计算,查表,故应剔除,3、狄克逊(Dixon)准则,正态测量总体的一个样本,按从大到小顺序排列为,构造统计量,与,与,与,与,若,则判断为异常值。,若,则判断为异常值。,否则,判断没有异常值。,判断准则:,例 题,重复测量某电阻共10次,101.0,101.1,101.2,101.2,101.3,101.3,101.3,101.4,101.5,101.7。数据已按大小顺序排列,用狄克逊准则判断其中是否有粗差,并写出测量结果。,【解

6、】,计算统计量,查表,故数据中无异常值。,测量电阻的极限误差,故该电阻的测量结果为,计算结果,(1)大样本情形(n50),用3准则最简单方便;30n50情形,用Grubbs准则效果较好;情形,用Grubbs准则适用于剔除单个异常值,用Dixon准则适用于剔除多个异常值。 (2)在实际应用中,较为精密的场合可选用二三种准则同时判断,若一致认为应当剔除时,则可以比较放心地剔除;当几种方法的判定结果有矛盾时,则应当慎重考虑,通常选择,且在可剔与不可剔时,一般以不剔除为妥。,总 结,三、判别粗大误差应注意的几个问题,(一)准确找出可疑测量值,测量列中残余误差绝对值最大者即为可疑值。它为测量列中最大测得

7、值或最小测得值之一,仅比较两者残余误差的大小即可确定。,依据测量准确度的要求和测量次数来选择判别准则。一般情况下可这样考虑:当测量次数n30,或当n10做粗略判别时,可采用莱因达准则。当n30时,可采用格拉布斯准则或狄克逊准则。,(二)合理选择判别准则,三、判别粗大误差应注意的几个问题,(三)查找粗大误差产生的原因,对由判别准则确定为“异常值”的可疑值,不能简单剔除了事,还要仔细分析,找出产生异常值的具体原因,以做出正确的判断。,三、判别粗大误差应注意的几个问题,(四)判别准则的比较,用一种判别准则不能充分肯定的可疑值,建议按如下方法处理:若测量列中,仅存在一个不能充分肯定的可疑值时,应以格拉布斯准则判别结果为准;若同时存在两个不能充分肯定的可疑值时,应以狄克逊准则判别结果为准。,三、判别粗大误差应注意的几个问题,(五)全部测量数据的否定,若在有限次的测量列中,出现两个以上异常值时,通常可认为整个测量结果是在不正常的条件下得到的,对此应改进完善测量方法,重新进行有效测量。,三、判别粗大误差应注意的几个问题,欢迎进入下一章的学习:非等精度测量,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号