《全等三角形的条件ppt课件.ppt》由会员分享,可在线阅读,更多相关《全等三角形的条件ppt课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、浙教版 七年级数学(下),七年级数学备课组 2013.8.21,1.5 三角形全等的条件(2),回顾与思考,到目前为止,我们已学过哪些方法判定两三角形全等?,2.边边边公理(SSS),1. 全等三角形的定义,1.已知ABDCBD,CD=2cm、DE=3cm,则AE的长为_cm,课前练一练:,5,想一想:,星期天,小刚在家玩蓝球,不小心将一块三角形玻璃摔坏了(如图所示)。情急之中,小刚量出了AB、BC的长,然后便去了玻璃店,他想重新裁得一块和原来一样的三角形玻璃。小刚能如愿吗?,结论:两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”,应用格式,在ABC和FED中AB=FEA
2、BC=FEDBC=ED ABCFED(SAS),例1:,如图,AC与BD相交于点O。已知OA=OC,OB=OD,说明AOBCOD的理由。,想一想:,如图,把两根钢条AA,BB的中点连在一起,可以做成一个测量工件内槽宽的卡钳。只要测量出AB的长就知道内槽AB的宽。请说明理由。,小明做了一个如图所示的风筝,其中EDH=FDH, ED=FD ,将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同桌进行交流。,OA=OB COA=COBOC=OC,B,COA=BOC=90,在COA与COB中,COACOB( SAS),CA=CB(全等三角形对应边相等),例2 如图,直线 AB,垂足为O且OA=
3、OB,点C是直线 上任意一点,说明CA=CB的理由。,直线 AB,中垂线的性质线段垂直平分线上的点到线段两端点的距离相等,补充练习:,. 如图(1), ABC中,BC=10cm,AB的中垂线交于BC于D,AC的中垂线交BC于E,则ADE的周长是_.,探索,通过例你能发现线段和直线DE之间有什么特殊的位置关系?,结论:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线,如图直线a垂直平分线段AB.则CA与CB,DA与DB,EA与EB之间有什么关系?由此你能得出什么结论?,A,B,C,D,E,a,结论:线段垂直平分线上的点到线段两端点的距离相等,关系:,,以2.5cm,3.
4、5cm为三角形的两边,长度为2.5cm的边所对的角为40o,情况又怎样?动手画一画,你发现了什么?,A,B,C,D,E,F,2.5cm,3.5cm,40,40,3.5cm,2.5cm,结论:两边及其一边所对的角相等,两个三角形不一定全等,试一试:,1、今天我们学习哪种方法判定两三角形全等?,答:边角边(SAS),2、通过这节课,判定三角形全等的条件有哪些?,答:全等三角形的定义SSS、SAS,“边边角”能不能判定两个三角形全等?,小结,F,E,D,C,B,A,如图,BE,ABEF,BDEC,那么ABC与FED全等吗?为什么?,解:全等。BD=EC(已知)BDCDECCD。即BCED,在ABC与FED中,ABCFED(SAS),小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。,AC=DC ACB=DCE BC=EC,ACBDCE(SAS),AB=DE,E,C,B,A,D,如图线段AB是一个池塘的长度,现在想测量这个池塘的长度,在水上测量不方便,你有什么好的方法较方便地把池塘的长度测量出来吗?想想看。,解:在ACB和DCE中,再 见,祝同学们学习进步,