《国外大学经典课件纳米材料在能源与生物医学的用途.ppt》由会员分享,可在线阅读,更多相关《国外大学经典课件纳米材料在能源与生物医学的用途.ppt(23页珍藏版)》请在三一办公上搜索。
1、Nanostructured Carbide-Derived Carbonsfor Energy-Related and Biomedical ApplicationsYury GogotsiDirector, A.J. Drexel Nanotechnology InstituteTrustee Chair Professor of Materials Science & EngineeringDrexel University, Philadelphia, PA 19104, USAgogotsidrexel.edu,Nanostructured Carbide-Derived,Major
2、 Research Activities,Nanotubes, Nanocones, and Nanowires Y. G., J.A. Libera, N. Kalashnikov, M. Yoshimura, Science, v. 290, 317 (2000)Nanotube-Based Nanofluidic DevicesY. G., J. Libera, A. Yazicioglu, et al., Appl. Phys. Letters,v. 79, p.1021 (2001) N. Naguib, H. Ye, Y. G., et al. Nano Letters, v. 4
3、, 2237 (2004) Nanotube-Reinforced PolymersF. Ko, Y. G., A. Ali, et al., Advanced Materials, v. 15, 1161 (2003)Nanodiamond Powders and CompositesS. Osswald, G. Yushin, V. Mochalin, S. Kucheyev, Y. G., J. American Chemical Society, v. 128, 11635 (2006) Indentation Induced Phase Transformations Y. G.,
4、A. Kailer, K.G. Nickel, Nature, v. 401, 663 (1999) Raman Spectroscopy and Electron MicroscopyP.H. Tan, S. Dimovski, Y.G., Phil. Trans. Royal Soc. Lond. A, v.362, 2289 (2004) Carbide-Derived Carbons for Energy-Related and Other ApplicationsY. G, M. Yoshimura, Nature, v. 367, 628-630 (1994) Y. G., S.
5、Welz, D. Ersoy, M.J. McNallan, Nature, v. 411, 283 (2001) J. Chmiola, G. Yushin, Y.G., et al., Science, v. 313, 1760 (2006),Major Research ActivitiesNanot,nucleus,mitochondria,Carbon Nanotube,Nanotube-Tipped Multifunctional Cellular Probes,J. R. Freedman, et al. Appl. Phys. Lett. 90, 103108 (2007)D.
6、 Staack, et al, Angewandte Chemie Int. Ed., 47, 8020 (2008)M. G. Schrlau, et al, Nanotechnology 19, 325102 (2008),v,Electrical. Fluorescence.Optical, SERS,Electrochemical measurements,Glass pipette,Nanotube,nucleusmitochondriaCarbon Nano,Carbide-Derived Carbon (CDC),SiC(s) + 2Cl2(g) SiCl4(g) + C(s),
7、Process Features Network of open poresPrecise control over structure and pore size Coating, free standing monolith or powder Numerous carbides can be used Linear kinetics,Vcarbide = VCDC,Etching Agent:,Cl2, F2 ,Br2, I2, HCl, HBr, HI,Supercritical H2O,200-1200oC,Temperature:,Carbide,2 nm,CarbidePoros
8、ity = 0%,Carbide Derived Carbon,2 nm,Nanoporous CarbonPorosity 50%,O. Hutchins, US Patent, 1271713 (1918)W.A. Mohun, US Patent, 3066099 (1962)S.K. Gordeev et al., J.Appl. Chem. (USSR) 64, 1178 (1991)N.F. Fedorov, Russ. Chem. J. 39, 73 (1995)Y. Gogotsi, M. Yoshimura, Nature, 367, p. 628 (1994)A. Krav
9、chik et al., Russ. J. Appl. Chem. 72, 2159 (1999)Y. Gogotsi, et al, Nature, 411, p. 283 (2001)J. Leis, et al. Carbon, 39, 2043 (2001),Carbide-Derived Carbon (CDC)Si,Positions and spatial distribution of carbon atoms in the carbide affect the structure and pore size/shape of CDC,G. Yushin, A. Nikitin
10、, Y. Gogotsi, Carbide Derived Carbon, in Nanomaterials Handbook, CRC Press (2006),Carbide Lattice Template for CDC,Positions and spatial distribu,G. Yushin, A. Nikitin, Y. Gogotsi, in Nanomaterials Handbook, ed. by Y. Gogotsi (CRC Press, 2006),Carbide Lattice Template for CDC,Ti3SiC2-CDC (1200C),SiC
11、-CDC (1200C),Pore-size distributions calculated using NL DFT model,Ar sorption at 77 KAutosorb-1,G. Yushin, A. Nikitin, Y. Gogo,Gogotsi, Y., et al., Nature Materials, v. 2, 591 (2003),dD/dT 0.0005 nm/oC,or: +/- 10o C temperature control - better than 0.1 pore control.,Tunable Pore Size in CDC,Choice
12、 of starting material and synthesis conditions gives an almost unlimited range of porosity distributions,High surface area Uniform pores,Ti3SiC2 -CDC,T=300C,Gogotsi, Y., et al., Nature Ma,Formation of Graphite and Nanotubes,Z. G. Cambaz, G. Yushin, S. Osswald, V. Mochalin, Y. Gogotsi, Carbon (2008)
13、46, 841,Vacuum decomposition of SiC produces ordered nanostructures:Graphene, graphite or CNTsFactors affectingCDC structure:TemperatureCrystal faceOxygen PSurface state (roughness)Surface chemistryHeating rate,M. Kusunoki at al. Applied Physics Letters 77, 424, 2000; Chemical Physics Letters, 366,
14、458, 2002,SiT=1700C, 10-6 vacuumgraphit,CDC: Powders, Films, Fibers, Bulk,CDC coated SiC Tyranno fabric,Bulk CDCfrom sinteredSiC,CDC coateddynamic seals,d=3 cm,Powder,CDC: Powders, Films, Fibers, B,Efficiency of Energy Technologies,Input,Ideal storage(no losses),Output,Supercapacitors: 109%,0%,100%,
15、Primaryrenewable energy,U. Bossel - European Fuel Cell Forum - July 2008,Liquefied hydrogen: 400%,Compressed hydrogen: 312%,Compressed air: 156%,Pumped water: 130%,Lead acid batteries: 120%,Lithium-ion batteries: 116%,Useful energy,Energy DistributionToday: 80% chemical, 20% physicalFuture: 20% chem
16、ical, 80% physical,Chemical StorageCapacitive StorageCross-cutting panel,P. Simon, Y. Gogotsi, Nature Materials, v.7, 845 (2008),Efficiency of Energy Technolog,Unexpected capacitance increase as pores decrease below 1nm,Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L., Sci
17、ence, 2006, v. 313, 1760,Increase in Carbon Capacitance at pore size below 1 nm,Cation: (CH3CH2)4N+Anion: BF4-,Unexpected capacitance increas,Ions MUST be desolvated!,TiC-CDC Electrochemistry,J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Angew. Chemie Int. Ed. v. 47, 3395 (2008),Ions
18、MUST be desolvated!TiC-CD,Need to increase energy (100W-h kg-1) to directly compete with batteriesLarger voltage window that traditional electrolytes provides much greater energy densityStill need to understand capacitance mechanisms and possibly increase the voltage window even more,Carbon-Electrol
19、yte Couples,Question: How to match a porous carbon (select from hundreds) with an electrolyte (select from thousands)?,P. Simon, Y. Gogotsi, Nature Materials, v.7, 845 (2008),Need to increase energy (100W,TiC-CDC Ionic Liquid,C. Largeot, et al, J. Am. Chem. Soc. v. 130, 2730 (2008),Specific gravimet
20、ric and volumetric capacitances change versus the chlorination temperature for CDC electrodes tested in EMI-TFSI electrolyte at 60C. A standard activated carbon (Kuraray) designed for organic electrolyte-based supercapacitors reached 90 F/g and 45 F/cm3 under the same experimental conditions.,TiC-CD
21、C Ionic LiquidC. Large,Cryo-adsorption of Hydrogen,Weak interaction between H2 and adsorbent (e.g. isosteric heat of H2 adsorption is 5 kJ/mole on plan graphite and 5-7 kJ/mole on MOF, which is too weak for RT adsorption),Challenges:,MOF* Nanoporous Carbon,Candidates:,* O. Yaghi, et al. , J. Am. Che
22、m. Soc., 128, 3494 (2006),Y. Gogotsi, et al. , J. Am. Chem. Soc., 127, 16006 (2005),Cryo-adsorption of HydrogenWea,0,.,6,0,.,7,0,.,8,0,.,9,1,.,0,1,.,1,1,.,2,1,.,3,1,.,4,1,.,5,1,.,6,0,.,8,1,.,0,1,.,2,1,.,4,1,.,6,1,.,8,2,.,0,2,.,2,2,.,4,2,.,6,T,i,C,-,C,D,C,Z,r,C,-,C,D,C,S,i,C,-,C,D,C,B,4,C,-,C,D,C,P,o
23、,r,e,s,i,z,e,n,m,Small pores are more efficient than large ones for a given SSASSA of 3000 m2/g will be needed at ambient pressure for 7wt% storage - FEASIBLE!,Empty symbols: H2 treated samples,Y. Gogotsi, et al. , J. Am. Chem. Soc., 127, 16006 (2005),CDC for H2 Storage: Cryo-adsorption,77K1 atm,0.6
24、0.70.80.91.01.11.21.31.41.5,CDC for H2 storage: Cryo-adsorption,Large volume of pores 1 nm needed for high storage capacityDensity of gaseous H2 innano-pores can be higherthan density of liquid H2 J. Jagiello et al., J. Phys. Chem. B, in press (2006), Q. Wang et al., J. Chem. Phys. 110, 577-586 (199
25、9),if all these poresfilled with liquid H2,Small pores increase the interaction with H2 and thus result in higher H2 coverage of the sorbent surfaceCDC demonstrate stronger interaction with H2 than CNT and MOF,G. Yushin et al., Advanced Functional Materials, 16, p. 2288-2293 (2006),CDC for H2 storag
26、e: Cryo-adsor,Overall, linear dependence of storage on BET SSA, similar to 1 atm.,Similar to 1 atm., small pores are overweighted in the SSA/normalized storage.,Correlation of 60 bar 77K storage with SSA and volume of small pores,Activation is effective if the increase in SSA comes mainlyfrom small
27、pores. On this basis, CDCs can outperform ACs.,max,The best pore size,Useful pores,Little or no contribution,Y. Gogotsi, et al, Importance of Pore Size in High Pressure Hydrogen Storage by Porous Carbons, Int. J.Hydrogen Energy (2008),Overall, linear dependence of,CDC for Protein Adsorption,Grand ch
28、allenge - Sepsis,Severe sepsis kills 1,500 people/day (comparable to lung and breast cancer ( 2,700 and 1,100 people /day, respectively) Sepsis $ 17 billion / year in the US Inflammatory response is driven by a complex network of cytokines, inflammatory mediators Cytokine removal from blood brings u
29、nder control the unregulated pro- and anti-inflammatory processes driving sepsis,Hydrogen,TNF-,9.4 x 9.4 x 11.7 nm,CDC for Protein AdsorptionGran,CDC for Cytokine* Adsorption,* cytokines are regulatory proteins that are released by cells of the immune system and need to be removed from the blood in
30、case of an autoimmune disease.,TNF-,IL-6,CDC outperformed commercial carbons in the efficiency of cytokines removal,G. Yushin, et al. Biomaterials, 27, 5755 , 2006,CDC for Cytokine* Adsorption*,CDC for Cytokine Adsorption,Adsorption depends on the SSA of adsorbents accessible by cytokines,G. Yushin,
31、 et al. Biomaterials, 27, 5755 , 2006,CDC for Cytokine Adsorption Ad,Further reading:G. Yushin, Y. Gogotsi, and A. Nikitin, Carbide Derived Carbon, in Nanomaterials Handbook, Y. Gogotsi, Editor. 2006, CRC Press. p. 237-280.,Conclusions,CDC process enables design and fine tuning of porous carbons for
32、 improved performance in energy applications:electrochemical capacitors, hydrogen storage, methane storage, fuel cell catalyst support, etc. Move from trial-and-error tests to science-driven design of nanostructured carbons for energy, biomedical and other applications,Further reading:Conclusions,Ac
33、knowledgements,Students and post-docs at Drexel University Drexel University : J. Chmiola, G. Yushin, C. Portet, E. Hoffman, R. Dash, G. Cambaz and otherCollaborators:Prof. P. Simon, Paul Sabatier University, Toulouse, FranceProf. J.E. Fischer, University of PennsylvaniaProf. M. Barsoum, Drexel University, Prof. M.J. McNallan, UICFunding: DOE, NSF, Arkema,AcknowledgementsStudents and p,