全自动存包柜项目设计教材.docx

上传人:小飞机 文档编号:1704544 上传时间:2022-12-15 格式:DOCX 页数:44 大小:915.63KB
返回 下载 相关 举报
全自动存包柜项目设计教材.docx_第1页
第1页 / 共44页
全自动存包柜项目设计教材.docx_第2页
第2页 / 共44页
全自动存包柜项目设计教材.docx_第3页
第3页 / 共44页
全自动存包柜项目设计教材.docx_第4页
第4页 / 共44页
全自动存包柜项目设计教材.docx_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《全自动存包柜项目设计教材.docx》由会员分享,可在线阅读,更多相关《全自动存包柜项目设计教材.docx(44页珍藏版)》请在三一办公上搜索。

1、摘 要本文详细介绍了国内自动存包控制系统的发展现状,发展中所面临的问题。并详细介绍了本系统采用的单片机做控制器,可以同时管理N个存包柜。柜门锁由电磁阀控制,当顾客需要存包的时候,可以自行到存包柜前按“开门”键,单片机接收到一脉冲信号,并通过系统I/O口发出相应的信号,控制锁柜门的电磁阀将一空箱打开,顾客即可存包,并将柜门关上。当顾客需要取包时,要将只要将条码放置到条形码阅读器前方,条形码阅读器采集到条码信息输出相应的高低电平信号传给单片机,系统比较密码一致后,发出开箱信号至电磁阀是柜门打开,顾客即可将包取出。关键词:自动存包 单片机 光电传感器 条形码阅读器目 录前 言1第1章 自动存包柜2第

2、1.1节 自动存包柜的发展概述2第1.2节 总体方案确定3第2章 系统硬件设计4第2.1节 MCS51单片机主要应用特性4第2.2节 自动存包系统面板设计及控制原理图6第2.3节 微型处理器9第2.4节 系统扩展12第2.5节 输入/输出接口系统设计20第2.6节 条形码阅读器设计25第2.7节 电机控制电路设计26第2.8节 电源27第3章 系统流程图29第3.1节 控制主程序流程图29第3.2节 显示子程序程图31第3.3节 输入给定值中断服务程序32结 论33附 录34参考文献39全自动存包柜项目设计学校:北京理工大学珠海学院学院:信息学院专业班级:电气工程及其自动化5班学生姓名:宋清华

3、 指导老师:许强强 指导老师签名: 日期: 年 月 日 信息学院学生实习学分申请表 年 月 日学生姓名宋清华学生学号130109051002专业电气工程及其自动化班级5项目名称全自动存包柜项目设计项目内容简 述申 请学分数 学生签字: 年 月 日 指导老师认定意见指导老师签字: 年 月 日北京理工大学珠海学院信息学院前 言随着我国的不断发展,产品呈现出种类数目不断增多、丰富的局面。尤其是生产质量的不断提高,对技术服务提出了更高的要求,特别是对物品的自动存储提出了更新更高的要求。在当前各种多功能全自动存包机逐渐进入各超市的情况下,我们有必要对国产自动存包控制的应用现状及发展作进一步探讨。在超市、

4、综合商店、个人商店等人流量大的地方,常常需要对顾客随带物品进行存储。如果用人工完成不但麻烦,而且效率低,劳动强度大。随着微型计算机控制的普及,特别是单片机的应用,给该类系统的设计带来了极大的便利,在本次设计中,将主要介绍单片机控制自动存包控制系统的设计方法。第1章 自动存包柜第1.1节 自动存包柜的发展概述电子存包柜又名自动存包柜、电子寄存柜,是20世纪嵌入式计算机快速发展后在传统寄存行业的一大应用。从外观和用途来看,电子存包柜属于家具类别中的钢制家具。从实现方式和功能上来看,电子存包柜属于电子专用设备。电子存包柜主要由以下几种类型:(1)机设条码式电子存包柜 存物时:按“存”键,寄存柜自动打

5、印一张密码条,机器语音提示:“请取密码条”。使用者抽出密码纸,对应的箱门自动打开,存好后关上箱门。取物时:直接将条码纸在扫描口扫描,对应的箱门会自动打开。语音提示:“请取完物品后关好箱门。”(2)指纹式电子存包柜 以使用者指纹作为寄存的凭证;当使用者进行存物操作时,须先按一下操作键盘中的“存”键,然后在指纹采集窗里采集指纹,机器会把该指纹与分配给使用者使用的寄存箱的箱号结合起来,并将信息自动记录下,同时自动打开该箱,供使用者存物,存完后使用者自己关好箱门;取物时,只需须先按一下操作键盘中的“取”键,然后在指纹采集窗里采集指纹,寄存柜将指纹数据与先前记录下的进行比对,正确后才会打开该箱供使用者取

6、物(同时机器会自动记录当时的时间、指纹以备查询)。(3)非接触IC卡电子存包柜 以使用者所持IC卡(即射频卡)作为寄存的凭证;当使用者进行存物操作时,须先按一下操作键盘中的“存”键再刷卡(即让寄存柜读取卡号),寄存柜先识别是否为该场所的IC卡,若不是则拒绝存物;若是,机器会把该卡号与分配给使用者使用的寄存箱的箱号结合起来,并将信息自动记录下,同时自动打开该箱,供使用者存物,存完后自己关好箱门;取物时,只需须先按一下操作键盘中的“取”键再刷卡,寄存柜将读取的卡号与先前记录下的进行比对,正确后才会打开该箱供使用者取物(同时机器会自动记录当时的时间、卡号以备查询)。 (4)联网型非接触IC卡电子存包

7、柜 联网型非接触IC卡电子存包柜基本功能与非接触IC卡电子存包柜一致,另外增加了网络通讯模块,上位机管理软件等,以实现寄存状态联网监控,分段收费,报表打印等功能。 现在公共场所应用比较广泛。因此,研制出一种能自动存包的装置有很重大的意义,我所研究的就是这方面的课题。第1.2节 总体方案确定根据“自动存包”这一目的要求,做如下设计安排:第一部分:CPU核心控制部分,由单片机8031、复位电路、时钟电路等构成,是整个系统的核心。第二部分:键盘显示控制部分。对3个数码管和2个按键进行管理,3个数码管用于显示两位柜号和3位密码,12个按键分别为10个数字键和2个功能键。通过这些键盘,用户就可以完成所有

8、的操作。第三部分:执行机构部分。它是通过8051的并行口扩展一片8255A芯片,并通过8255A控制20个灯的状态(亮灭)来模拟柜子的存包取包的过程。软件部分主要采用我们自己设定的一种与柜号相关联的算法来产生一组3位的随机密码,而密码的产生、核对过程就对应存包、取包的过程。第2章 系统硬件设计第2.1节 MCS51单片机主要应用特性MCS-51单片机是美国Intel公司于1980年推出的产品,与MCS-48单片机相比,它的结构更先进,功能更强,在原来的基础上增加了更多的电路单元和指令,指令数达111条,MCS-51单片机可以算是相当成功的产品,一直到现在,MCS-51系列或其兼容的单片机仍是应

9、用的主流产品,各高校及专业学校的培训教材仍用MCS-51单片机作为代表进行理论基础学习。我们也以这一代表性的机型进行系统的设计。MCS-51系列单片机主要包括8031、8051和8751等通用产品,其主要功能如下:8位CPU4kbytes 程序存储器(ROM)128bytes的数据存储器(RAM)32条I/O口线111条指令,大部分为单字节指令21个专用寄存器2个可编程定时/计数器5个中断源,2个优先级一个全双工串行通信口外部数据存储器寻址空间为64kB外部程序存储器寻址空间为64kB逻辑操作位寻址功能双列直插40PinDIP封装单一+5V电源供电MCS-51以其典型的结构和完善的总线专用寄存

10、器的集中管理,众多的逻辑位操作功能及面向控制的丰富的指令系统,堪称为一代“名机”,为以后的其它单片机的发展奠定了基础。正因为其优越的性能和完善的结构,导致后来的许多厂商多沿用或参考了其体系结构,有许多世界大的电气商丰富和发展了MCS-51单片机,像PHILIPS、Dallas、ATMEL等著名的半导体公司都推出了兼容MCS-51的单片机产品,就连我国的台湾WINBOND公司也发展了兼容MCS-51的单片机品种。近年来MCS-51获得了飞速的发展,MCS-51的发源公司Intel由于忙于开发PC及高端微处理器而无精力继续发展自己的单片机,而由其它厂商将其发展,最典型的是PHILIPS和ATMEL

11、公司,PHILIPS公司主要是改善其性能,在原来的基础上发展了高速I/O口,A/D转换器,PWM(脉宽调制)、WDT等增强功能,并在低电压、微功耗、扩展串行总线(I2C)和控制网络总线(CAN)等功能加以完善。ATMEL公司推出的AT89Cxx系列兼容MCS-51的单片机,完美地将Flash(非易失闪存技术)EPROM与80C51内核结合起来,仍采用MCS-51的总体结构和指令系统,Flash的可反擦写程序存储器能有效地降低开发费用,并能使单片机作多次重复使用。8051是MCS-51系列单片机中的代表产品,它内部集成了功能强大的中央处理器,包含了硬件乘除法器、21个专用控制寄存器、4kB的程序

12、存储器、128字节的数据存储器、4组8位的并行口、两个16位的可编程定时/计数器、一个全双工的串行口以及布尔处理器。MCS-51采用模块式结构,MCS-51系列中各种加强型单片机都是以8051为核心加上一定的新的功能部件后组成的,从而使它们完全兼容。表2.1为MCS-51系列单片机常用产品特性。表2.1 MCS-51系列单片机常用产品特性型号片内存储器I/O线定时器/计数器片外寻址空间(KB)程序数据程序数据80514K ROM128322个16位646487514K EPROM128322个16位64648031无128322个16位646480C514K ROM128322个16位6464

13、87C514K EPROM128322个16位646480C31无128322个16位646480524K ROM256323个16位646487524K EPROM256323个16位64648032无256323个16位6464MCS-51具有比较大的寻址空间,地址线宽达16条,即外部数据存储器和程序存储器的寻址范围达216=64kB,这作为单片机控制来说已是比较大的,这同时具备对口的访问能力。此外,MCS-51采用模块化结构,可方便地增删一个模块就可使引脚和指令兼容的新产品,从而容易使产品形成系列化。由于MCS-51集成了几乎完善的8位中央处理单元,处理功能强,中央处理单元中集成了方便灵

14、活的专用寄存器,硬件的加、减、乘、除法器和布尔处理机及各种逻辑运算和转移指令,这给应用提供了极大的便利。MCS-51的指令系统近乎完善,指令系统中包含了全面的数据传送指令、完善的算术和逻辑运算指令、方便的逻辑操作和控制指令、对于编程来说,是相当灵活和方便的。MCS-51单片机的工作频率为2-12MHz,当振荡频率为12MHz时,一个机器周期为1us,这个速度应该说是比较快的。MCS-51把微型计算机的主要部件都集成在一块芯片上,使得数据传送距离大大缩短,可靠性更高,运行速度更块。由于属于芯片化的微型计算机,各功能部件在芯片中的布局和结构达最优化,抗干扰能力加强,工作亦相对稳定。因此,在工业测控

15、系统中,使用单片机是最理想的选择。单片机属于典型的嵌入式系统,所以它是低端控制系统最佳器件。鉴于MCS-51的以上特点,本文的设计就是基于MCS-51的8031型号单片机来设计的自动存包系统。第2.2节 自动存包系统面板设计及控制原理图2.2.1 面板设计自动存包控制系统面板如图2.1所示7821659430警报运行扫描出单区域显示区域存包取包图2.1 控制面板下图为实物图的展示: 图2.1 实物图展示2.2.2 系统控制原理图图2.3 自动存包系统控制原理图在本系统设计的自动存包系统中,采用8031单片机设计一个最小系统,为了读键盘给定值及完成检测和控制,系统中扩展一片8255A可编程接口及

16、程序存储器EPROM 2764其原理图如图2.3所示。在图2.3中所示,8031、74LS373、2764组成最小系统。第2.3节 微型处理器8031单片机是Intel公司生产的MCS-51系列单片机中的一种,除无片内ROM外,其余特性与MCS-51单片机基本一样。2.3.1 8031性能特点8031的主要性能包括:(1)与MCS-51位控制器产品系列兼容。(2)宽工作电压范围,VCC可为2.7V6V。(3)全静态工作,可从0Hz 至16Hz。(4)1288位内部RAM。(5)32条可编程I/O线。(6)两个16位定时器/计数器。(7)中断结构具有5个中断源和2个优先级。2.3.2 8031硬

17、件结构及引脚功能8031的内部硬件结构如图2.4所示:图2.4 8031引脚图在图2.4中所示,8031单片机采用40引脚双列直插封装(DIP)形式。采用方形封装工艺。由于受到引脚数目的限制,所以有一些引脚具有第二功能。在单片机的40条引脚中,有2条专用于主电源的引脚,2条外接晶体的引脚,4条控制和其它电源复用的引脚,32条输入/输出引脚。下面分别说明这些引脚的名称和功能。(1)主电源引脚Vcc和GNDVcc:芯片主电源,正常工作时接+5V电源。GND:接电源地。(2)时钟振荡引脚XTAL1和XTAL2XTAL1: 接外部晶体的一端。在单片内部,它是反相放大器的输入端,该放大器构成了片内振荡器

18、。在测外部时钟电路时,对于HMOS单片机,此引脚必须接地;对CHMOS单片机,此引脚作为驱动端。XTAL2: 接外部晶体的另一端。在单片机内部,接至上述振荡器的反相放大器的输出端,振荡器的频率是晶体振荡频率。若采用外部时钟电路时,对于HMOS单片机,该引脚输入外部时钟脉冲;对于CHMOS单片机,此引脚应悬空。(3)控制信号引脚RST/Vpd、ALE/PROG、PSEN和EA/Vpp。ALE/PROG: 地址锁存使能输出/编程脉冲输入端。在扩展系统时,ALE用于控制把P0口输出的低8位地址锁存起来,以实现低8位地址和数据的隔离,P0口作为数据地址复用口线。当访问单片机外部程序或数据存储器或外接I

19、/O口时,ALE输出脉冲的下降沿用低8位地址的锁存信号;即使不访问单片机外部程序或数据存储器或外接I/O口,ALE端仍以晶振频率的1/6输出脉冲信号,因此可以作为外部时钟或外部定时信号使用。但应注意,此时不能访问单片机外部程序、数据存储器或外设I/O接口。PSEN: 片外程序存储器读选通信号。在CPU向片外程序存储器读取指令和常数时,每个机器周期PSEN两次低电平有效。但在此期间,每当访问外部数据存储器或I/O接口时无效出现。EA/Vpp: 访问程序存储器控制信号/编程电源输入端。当EA端输入高电平时,单片机访问片内的程序存储器,在低4KB地址时,将自动转向执行外部程序存储器的程序。当EA输入

20、低电平时,CPU仅访问片外程序存储器。在对8751EPROM编程时,此引脚接+21V的编程电压VPP。RST/Vpd: 复位/掉电保护信号输入端。单片机上电后,只要在该引脚上输入24个振荡周期2个机器周期0宽度以上的高电平就会使单片机复位;若在RST与Vcc之间接一个10F的电容,则可实现单片机上电自动复位。RST/Vpd具有复位功能,在主电源Vcc掉电期间,该引脚可接上+5V的备用电源。当Vcc掉到低于规定的电平,而Vpd在其规定的电压范围内时,+5V就向片内RAM 提供备用电源,以保持片内RAM中的数据不丢失,复位后能继续正常运行。(4)输入/输出(I/O)引脚P0、P1、P2、P3(共3

21、2根)P0.0P0.7: P0口是一个8位双向I/O端口。在访问片外存储器时,它分时提供低8位地址和作8位双向数据总线。在EPROM编程时,从P0口输入指令字节;在验证程序时,则输出指令字节(验证时要外接上拉电阻)。P0口能一吸收电流的方式驱动8个LSTTL负载。P1.0P1.7: P1口是8位准双向I/O端口。在EPROM编程和程序验证时,它输入低8位址。P1口能驱动4个LSTTL负载。P2.0P2.7: P2口是8位准双向I/O端口。在CPU访问外部存储器时,它输出高8位地址。在对EPROM编程和程序验证时,它输出高8位地址。P2口可驱动4个LSTTL负载。P3.0P3.7: P3口是8位

22、准双I/O端口。它是一个复用功能口。作为第一功能使用时,为普通I/O口,其功能和操作方法与P1口相同。作为第二功能使用时,各引脚的定义如表2-2所示。P3口的每一引脚均可独立定义第一功能的输入输出或第二功能。P3口能驱动4个LSTTL负载。表2.2 各口线的第二功能定义口线引脚第二功能P3.010RXD(串行输入口)P3.111TXD(串行输出口)P3.212(外部中断0)P3.313(外部中断1)P3.414T0(定时器0外部输入)P3.515T1(定时器1外部输入)P3.616(外部数据存储器写脉冲)P3.717(外部数据存储器读脉冲)第2.4节 系统扩展 8031数据存储器I/O接口程序

23、存储器 8031具有很强的扩展功能,允许扩展各种外围电路以补充片内资源不足,适应特定应用的需要,扩展内容包括数据存储器、程序存储器、I/O接口等扩展结构如图2.5所示:图2.5 8031系统扩展结构图 2.4.1 I/O接口的扩展 由于我们采集的数据量较多,因此CPU的I/O口线不够用,所以我们使用8255A来扩展I/O口,以满足系统的要求。8255A是Intel公司生产的通用可编程并行I/O接口芯片。8031和8255A相连可为外设提供三个8位I/O端口,允许采用同步、异步和中断方式传送I/O数据。(1)8255A内部结构和引脚功能内部结构8255A内部由四部分电路组成。它们是A口、B口和C

24、口,A组控制器和B控制器,数据缓冲器及读写控制逻辑,如图2-6所示。1 A口、B口和C口。A口、B口和C口均为8位I/O数据口,但结构上略有差别。A口由一个8位的数据输出缓冲/锁存器和一个8位的数据输入缓冲/锁存器组成。B口由一个8位的数据输出缓冲/锁存器和一个8位的数据输入缓冲器组成。三个端口都可以和外设相连,分别传送外设的输入/输出数据或控制信息。2 A、B组控制电路。这是两组根据CPU的命令字控制8255工作方式的电路。A组控制A口及C口的高4位,B组控制B口及C口的低4位。3 数据总线缓冲器。它是一个8位的双向三态驱动器,用于与单片机的数据总线相连,传送数据或控制信息。4 读/写控制逻

25、辑。这部分电路接收MCS-51送来的读/写命令和选口地址,用于控制对8255A的读/写。图2.6 8255A芯片的内部结构图 引脚功能8255A有40条引脚,采用双列直插式封装。如图2.7所示。图2.7 8255A引脚图1数据总线(8条):D0D7:三态双向数据总线,8255A与CPU数据传送的通道,当CPU 执行输入输出指令时,通过它实现8位数据的读/写操作,控制字和状态信息也通过数据总线传送。2控制总线(6条):RESET: 复位信号,输入高电平有效。一般和单片机的复位相连,复位后,8255A所有内部寄存器清0,所有口都为输入方式。:片选信号线,当这个输入引脚为低电平时有效,表示芯片被选中

26、,允许8255A与CPU进行通讯。:读信号线,当这个输入引脚为低电平时,允许8255A通过数据总线向CPU发送数据或状态字。:写入信号,当这个输入引脚为低电平时,允许CPU将数据或控制字写入8255A。A0、A1:地址输入线。当=0,芯片被选中时,这两位的4种组合00、01、10、11分别用于选择A、B、C口和控制寄存器。其组合如表2.3。表2.3 8255A控制信号功能表A1A2端口地址端口功能0000100 HA口读A口0001000 HA口写A口0010101HB口读B口0011001HB口写B口0100102HC口写C口0101002HC口读C口0111003H控制口写控制字1总线高阻

27、3并行I/O总线(24条):这些总线用于和外设相连,分别与A、B、C口相对应,用于8255A和外设之间传送数据,共分三组:PA0PA7:端口A输入输出线,一个8位的数据输出锁存器/缓冲器,一个8位的数据输入锁存器。PB0PB7:端口B输入输出线,一个8位的I/O锁存器,一个8位的输入输出缓冲器。PC0PC7:端口C输入输出线,一个8位的数据输出锁存器/缓冲器,一个8位的数据输入缓冲器。4电源线(2条):VCC为5V电源线,允许变化10%;GND为地线。 (2)8255A方式控制字8255A有两个控制字:方式控制字和C口单一置复位控制字。用户通过程序可以把这两个控制字送到8255A的控制寄存器(

28、A1A011B),以设定8255A的工作方式和C口各位状态。这两个控制字以D7位状态作为标志。8255A各端口工作于什么方式和是输入还是输出方式,是由方式控制字决定的。方式控制字格式如图2.7所示。D7为控制字标志位,若D7=1,则本控制字为方式控制字,若D70,则本控制字为C口单一置复位控制字。D6D3为A组控制位。其中,D6和D5位A组方式选择位:若D6D500,则A组设定为方式0;若D6D501,则A组设定为方式1:若D6D51(为任意),则A组设定为方式2。D4为A口输入/输出控制位:若D40,则PA0PA7,用于输出数据;若D40,则PA0PA7用于输入数据。D3位C口高4位输入/输

29、出控制位:若D30,则PC4PC7为输出数据方式;若D31,则PC4PC7为输入方式。图2.8 方式控制字D2D0为B组控制位,其作用和D6D3类似。其中,D2为方式选择位,若D20,则B组设定为方式0,若D21,则B组设定为方式1。D1为B口输入/输出控制位,D10,则PB0PB7用于输出数据,若D11,则PB0PB7用于输入数据。D0为C口低4位输入/输出控制位,若D00,则PC0PC3用于输出数据,若D01,则PC0PC3用于输入数据。如图2.9所示:图2.9 置位控制字 (3)8255A的工作方式8255A有三种工作方式:方式0(Mode0)、方式1(Mode1)和方式2(Mode2)

30、。正确的选用方式控制字,并把它通过程序送给8255A的控制字寄存器就可设定8255A的工作方式。方式0(基本输入/输出方式):这种方式不需要任何选通信号。A口、B口及C口的两个4位口中的任何一个端口都可以被设定为输入或输出。输出锁存,输入不锁存。根据控制字D4、D3、D1、D0位的变化,方式0有16种不同的输入、输出组合方式。方式1(选通输入/输出方式):这种方式下,A口、B口、C口分为两组。A组包括A口和C口的高4位,A口可由编程设定为输入口或输出口,C口的高四位则用来作为输入/输出操作的控制和同步信号;B组包括B口和C口的低4位,B口可由编程设定为输入口或输出口,C口的低四位则用来作为输入

31、/输出操作的控制和同步信号。A口和B口的输入输出数据都被锁存。方式2(双向总线方式):这种方式下,A口为8位双向总线口,C口的PC3PC7用来作为输入/输出操作的控制和同步信号;B口和C口的PC0PC2则可编程为方式0或方式1工作。 (4)8255A与CPU 8031的接口8255A与CPU 8031的接口连线如图2.10所示。图2.10 8255A与CPU8031的接线图8255A与单片机间有3组连线:D7D8根数据线依次与P0口的P0.7P0.0一一对应连接:RD、WR、RESET等3根控制线与单片机的同名引脚互连;片选端CS则与P2口相连;A1、A0两根地址线与单片机的两个I/O引脚连接

32、。 2.4.2 存储功能扩展由于我们需要保存一定的数据,而8031片内没有程序存储功能,因此,EA管脚总是接低电平。根据保存的数据量需要,我们选用了EPROM 2764为外扩的数据存储器。(1)态缓冲输出的8D锁存器,由于单片机的三总线结构中,数据线与地址线的低8位共用P0口,因此必须用地址锁存器将地址信号和数据信号区分开。74LS373的锁存控制端直接与单片机的锁存控制信号ALE相连,在ALE的下降沿锁存低8位地址。其中,D0D7为数据输入端;Q0Q7为数据输出端;OE为三态允许控制端(低电平有效);LE为锁存允许端。 图2.11 74LS373 引脚该片如何工作由功能表2.4决定,表中L为

33、低电平、H为高电平、Z为高阻抗(相当开路)X为任意电平,一般将OE接低电平,LE接ALE就能正常工作。表2.4 74LS373真值表LEDnQnLHHHLHLLLLLLLLHHHXXZ (2)2764 EPROM紫外线擦除电可编程只读存储器EPROM是国内用得较多的程序存储器。EPROM芯片上有一个玻璃窗口,在紫外线照射下,存储器中的各位信息均变1,即处于擦除状态。擦除干净的EPROM可以通过编程器将应用程序固化到芯片中。本次设计所选用的是2764 EPROM。 2764的概述这是一种可以擦去重写的只读存储器。通常用紫外线对其窗口进行照射,即可把它所存储的内容擦去。之后,又可以对其重新进行编程

34、,写入新的内容。一旦写入,其存储的内容可以长期(几十年)地保存,即使去掉电源电压,也不会影响它所存储的内容。图2.11为通用的EPROM 2764的引脚图,它的容量为8 K8bit。8 K表示有81024个存储单元,8位表示每个单元存储数据的宽度是8位。前者确定了地址线的位数是12位(A0A12),后者确定了数据线的位数是8位(D0D7)。目前,除了串行存储器之外,一般情况下,我们使用的都是8位数据存储器。单一+5 V供电,工作电流为75 mA,维持电流为35 mA,读出时间最大为250 ns,DIP28封装。2764VppA12A7A6A5A4A3A2A1A0D0D1D2GNDVccPGMN

35、.CA8A9A11OEA10CED7D6D5D4D327648K EPROM图2.12 2764引脚图引脚功能其中,A0A12为地址线;D0D7为数据线; 为片选线;是读线;是编程输入;Vpp为编程电源。除了12条地址线和8条数据线之外, 为片选线,低电平有效。也就是说,只有当为低电平时,2764才被选中,否则,2764不工作。 EPROM 2764和锁存器74LS373与8031组成最小系统8031单片机扩展一片2764程序存储器电路如图2.12所示。1地址线。单片机扩展片外存储器时,地址是由P0和P2口提供的。图2.12中,2764的13条地址线(A0A12)中,低8位A0A7通过锁存器7

36、4LS373与P0口连接,高4位A8A12直接与P2口的P2.0P2.3连接,P2口本身有锁存功能。注意,锁存器的锁存使能端LE必须和单片机的ALE管脚相连。图2.13 8031扩展2764 EPROM硬件接线图2数据线。2764的8位数据线直接与单片机的P0口相连。因此,P0口是一个分时复用的地址/数据线。3控制线。CPU执行2764中存放的程序指令时,取指阶段就是对2764行读操作。注意,CPU对EPROM只能进行读操作,不能进行写操作。CPU对2764的读操作控制都是通过控制线实现的。2764控制线的连接有以下几条:CE:直接P2.5。OE:接8031的读选通信号端。在访问片外程序存储器

37、时,只要端出现负脉冲,即可从2764中读出程序。第2.5节 输入/输出接口系统设计输入/输出接口系统就是指人与计算机之间建立联系、交换信息的输入/输出设备接口,就是人机交互接口。这些输入/输出设备主要有键盘和显示器等。它们是系统中必不可少的输入、输出设备,是控制系统与操作人员之间交互的窗口。2.5.1 键盘系统设计键盘是若干按键的集合,是向系统提供操作人员干预命令及数据的接口设备。键盘可以分为编码键盘和非编码键盘两种类型。前者能自动识别按下的按键并且能产生相应的代码,以并行或串行的方式发送给CPU。它使用方便,接口简单,响应速度快,但是需要专用的硬件电路。本次设计中所采用的就是编码键盘。如图2

38、.3中所示,8255A为给定值输入接口。为了使系统简单,设计了一个由二极管矩阵组成的编码键盘,如图2.14所示:图2.14 编码键盘原理图键盘输出信号D,C,B,A(BCD码)分别接到8255A的A口PA3-PA0,键选通信号KEYSTROBE(高电平有效),经反向器接到8031的INT0管脚。当按下某一个按键时,KEYSTROBE为高电平,经过反相后的下降沿向8031申请中断。8031响应后,读入BCD码值,作为定值,并送显示。本次设计只有3位显示,所以最多只能给定999。输入顺序为从最高位(百位数)开始。当按键未按下时,所有输出端口均为高电平。当有按键按下以后该按键的BCD码将会出现在输出

39、线上。2.5.2 显示系统设计为了使操作人员及时掌握生产情况,在一般的微型计算机控制系统或者智能仪器当中,都配有显示程序。本次设计采用LED数码显示。(1)LED数码管的结构及显示原理常用的显示器件有:显示和记录仪表,CRT显示终端,LED或者LCD显示器,大屏幕显示器。本次设计所采用的是LED数码管。LED数码管具有结构简单,体积小,功耗低,响应速度快,易于匹配,寿命长,可靠性高等优点。LED数码管是由发光二极管组成,由于材料的不同,可以发出各种单色光线。发光二极管可以有多种组成形式,其中7段数码管应用最多,根据发光二极管内部的连接方式不同,又有共阴极或共阳极两种形式。如图2.15所示图2.

40、15 LED数码管结构 (2)74LS138结构及功能图2.16 74LS138结构A1、A2、A3分别为输入端,G1为使能端的高电平,0、Y1、Y2、Y3、Y4、Y5、Y6、Y7分别为输出端。在讲38译码器的时候,老师还讲了38译码器的逻辑真值表,而且,38译码器就是根据逻辑真值表研制出的,如下图:图2.17 74LS138 真值表注:表中的蓝色区域为输入使能端,黄色区域为输入选择端,绿色区域表示该译码器不工作。其引脚功能为:A、B、C为译码地址输入端;G1为选通端;2A、2B为选通端(低电平有效);Y0Y7为译码输出端(低电平有效)。(3) 74LS377结构及功能简单输出接口通常用74L

41、S377芯片。该芯片是一个种8D锁存器,该芯片的引脚排列如下图所示: 图2.18 74LS377引脚及功能图中相关引脚的功能如下:D0-D7:8位数据端输入端。Q0-Q7:8位数据输出端。G:使能控制端。CLK:时钟信号,上升沿锁存数据。 表2.5 74LS377真值表CLKDQ1XXQ01110100X0XQ 下图是利用74LS377进行简单输出接口的扩展的电路,图中,由于74LS的G端与P2.7口连接,所以他的地址是:0XXX XXXX XXXX XXXXB。如果把“X”全置1的话,就是0111 1111 1111 1111B即7FFH 图2.19 74LS377输出接口的扩展电路 由于5

42、1的与74LS的CLK端相连,当信号由低电平变高时,数据总线上的数据证实输出的数据。而此时P2.7也正输出低电平,有效,因此,数据就被锁存,有关程序如下:MOV DPTR, #7FFH : 地址MOV A, #DATA : DATA为要送出的数据MOV DPTR, A : P0口数据被74LS377锁存第2.6节 条形码阅读器设计条形码阅读器是传感器大家族中的成员,它把发射端和接收端之间光的强弱变化转化为电流的变化以达到探测的目的。条形码阅读器具有如下特点:输出回路和输入回路是电隔离的(即电绝缘),体积小、精度高、检测距离远,防水、防腐蚀、防震动,抗光、电、磁等干扰。所以它可以在冶金、纺织、烟

43、草、造纸、化工、电力、保安等各种行业得到应用。条形码阅读器(光电传感器)利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无。物体不限于金属,所有能反射光线的物体均可被检测。条形码阅读器将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。工作原理如图2.20所示。图2.20 光电传感器工作原理条形码阅读器在一般情况下由三部分构成,它们分别为发送器、接收器和检测电路。条形码阅读器的重要功能是能够处理光的强度变化,利用光学元件,在传播媒介中间使光束发生变化,利用光束来反射物体,使光束发射经过长距离后瞬间返回。发射器对准目标发射光束,发射的光束一般来源于发光二极管(LED)和激光二极管。光束不间断地发射,或者改变脉冲宽度。受脉冲调制的光束辐射强度在发射中经过多次选择,朝着目标不间断地运行。接收器由光电二极管或光电三极管组成。在接收器的前面,装有光学元件如透镜和光栏等。在其后面的是检测电路,它能滤出有效信号和应用该信号。此外,条形码阅读器的结构元件中还有发射板和光导纤维。条形码阅读器的种类也很多,根据条形码

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号