城市道路交叉口通行能力的建模分析与优化管理.docx

上传人:牧羊曲112 文档编号:1729227 上传时间:2022-12-16 格式:DOCX 页数:8 大小:413.44KB
返回 下载 相关 举报
城市道路交叉口通行能力的建模分析与优化管理.docx_第1页
第1页 / 共8页
城市道路交叉口通行能力的建模分析与优化管理.docx_第2页
第2页 / 共8页
城市道路交叉口通行能力的建模分析与优化管理.docx_第3页
第3页 / 共8页
城市道路交叉口通行能力的建模分析与优化管理.docx_第4页
第4页 / 共8页
城市道路交叉口通行能力的建模分析与优化管理.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《城市道路交叉口通行能力的建模分析与优化管理.docx》由会员分享,可在线阅读,更多相关《城市道路交叉口通行能力的建模分析与优化管理.docx(8页珍藏版)》请在三一办公上搜索。

1、 城市道路交叉口通行能力的建模分析与优化管理 摘 要 本文立足于我国混合交通交叉口的运行规律与特点,研究混合交通条件下道路信号交叉口通行能力的基础理论与方法。从研究思路、研究方法等方面,分析并综合利用国内外现有相关研究,建立了量化行人、非机动车对通行能力影响的解析模型,最后着眼于混合交通交叉路口的道路建设和交通管理方面,建立了基于遗传算法的信号配时优化模型,对信号交叉口配时方案提出优化方案。 首先,在合理抽象和简化的基础上,描述了某一典型混合交通交叉路口的自行车、机动车、行人的情况,并针对给出的交叉路口,从信号控制、渠化分离、安全教育三个方面提出了相应的交通管理方案和建议。 对于第二个问题,本

2、文基于间隙接受的通行能力计算方法,以冲突区为着眼点将通行能力的计算分为以下三个方面详细进行讨论计算: 针对机动车与机动车冲突问题,考虑在理想状况下采用国内普遍使用的停车线法,就直行车道、直右车道、直左车道三种类型的车道分别计算其通行能力。并依据进口道设计通行能力为各车道设计通行能力之和的原则,对上述数据进行加总即得机动车与机动车冲突区的道路通行能力。 针对行人与机动车冲突问题,就单向车流与单向人流相交这一简单情形,建立人车冲突区机动车通行能力的计算模型,依据饱和流与非饱和流的计算,对机动车通行能力进行细化求解。并通过考虑双向人流,对上述模型进行一定的修正,使计算结果更符合实际。 针对非机动车与

3、机动车冲突问题,首先针对机动车右转车情形,将非机动车对机动车的影响分为绿灯初期非机动车占用冲突区的影响等四类,求出右转车道上的通行能力。在此基础上,类似的分别计算机动车左转车道和直行车道上的通行能力。 最后在计算所研究的车流上的各个冲突区(行人一机动车、非机动车一机动车以及机动车一机动车)通行能力的基础上,根据“木桶理论”的思路,确定车流通行能力瓶颈,进而确定车流通行能力。 对于第三个问题,在混合交通条件下,对传统的F.韦伯斯特B.柯布理论进行了改进,并结合第一问典型交叉路口的相关数据,进行信号配时方案的优化研究。结合我国混合交通状况的实际,构建了以延误时间最小、停车最少、通行能力最大为目标函

4、数的优化模型,采用遗传算法,通过Matlab编程实现交叉口信号配时优化模型的求解。最后与现有配时方案进行对照,对比分析了两种配时方案的效益。 在模型建立与求解后,我们对模型的科学性和可靠性进行评述,讨论了模型的优缺点,并提出所建模型的改进与推广方法。最后,在道路建设、科学交通管理、整顿交通秩序、加强政府职能等方面提出混合交通交叉路口管理的方案与建议。 关键词:混合交通 通行能力 木桶原理 信号配时 遗传算法 1. 问题重述 近年来,随着我国国民经济的发展,城市化进程的加快,城市交通系统得到相当大的改善。但随着我国机动车拥有量的增多,交通拥挤堵塞以及由此导致的交通事故的增加、环境污染的加剧,已经

5、成为我国城市尤其是大城市面临的极其严重的“城市病”之一,严重制约国民经济的进一步发展和人民生活水品的提高。交通拥堵阻碍了我国城市社会、经济与环境的健康发展,成为社会和公众关注的热点问题。 国内外许多研究表明,路段上一般不会发生阻塞和拥挤现象。路段是不会因为通行能力不足而产生堵塞,于是交通拥挤现象的症结主要在混合交通路口。混合交通指的是汽车与非机动车或车辆与行人,在同一道路上混行的交通。混合交通是一种客观现象,所谓混合交通在不同国家和不同时代其含意是不同的。在经济发达国家,公路上行驶的基本是汽车,混合交通是特指车速较高的小型汽车与车速较低的大型汽车所组成的交通,即行驶车辆之间存在的“速度差”;在

6、我国, 混合交通所指的是自行车、机动车、行人组成的混合交通,这种混合交通引发的交通拥堵、交通事故增加、城市环境不断恶化、运输效益下降等一系列问题,严重地影响了道路交通秩序,降低了道路通行能力,增加了道路交通管理难度。给我过交通规划、设计、管理、控制及组织提出了更为严峻的挑战。因此,如何从道路建设、科学交通管理、整顿交通秩序、加强政府职能等措施来减少混合交通相互之间的干扰,降低交通事故率是当前人们关注的问题。因此本文就以下三个问题进行研究: 1. 就某由一典型混合交通交叉路口的自行车、机动车、行人的情况,给出该交叉路口的交通管理方案; 2. 在适当假设下,建立描述混合交通交叉路口道路通行能力的数

7、学模型,并根据相应分析结果提出改进措施; 3. 为混合交通交叉路口的道路建设和交通管理提供优化方案。 2. 模型的假设与符号说明 2.1. 模型的假设 1. 本文所选的混合交叉路口具有典型性,可以代表一大类交通路况; 2. 混合交通路口处,机动车、行人以及非机动车都是随机到达,其到达概率服从一定的分布,行人群到达时距服从移位负指数分布,使用泊松分布描述非机动车的随机到达; 3. 机动车、行人以及非机动车的行为特征具有普遍性,研究中忽略特殊情况, 例如违章情况等。 2.2. 符号的说明一条有直行车道的设计通行能力(pcu/h); 信号周期(s); 信号周期的绿灯时间(s); 信号周期的红灯时间(

8、s); 信号交叉口右转向机动车行人冲突区通行能力; 信号交叉口右转向机动车行人冲突区左转车道通行能力; 信号交叉口右转车道机动车非机动车冲突区通行能力; 信号交叉口左转车道机动车非机动车冲突区通行能力; 信号交叉口直行车道机动车非机动车冲突区通行能力; 其他变量符号在文中使用时给出说明。 3. 问题分析 问题一就某一典型混合交叉路口,在合理假设下,给出了该路口的实际存在的交通管理方案,由于大部分混合交通路口多为信号交叉路口,因此给出的方案即为信号灯的相位配时方案; 针对问题二,分析了通行能力的定义以后,可得一个路口的通行能力可分为: 机动车与机动车相互影响下道路的通行能力,行人影响下道路机动车

9、的通行能力, 非机动车影响下道路机动车的通行能力。计算通行能力的方法国内外不一。在国内,其中具有代表性的有:停车线法、中国城市道路设计规范推荐方法、冲突点法。国外主要使用以下方法:HCM 推荐的饱和流率折减系数计算方法,冲突技术方法通过计算信号交叉口道路通行能力,可以得到各个相位实际存在的通行能力, 据此可以给出各个相位配时时长,即可给出问题一中典型交叉路口处交通管理方案的改进措施。 问题三简单而言,就是一个非线性优化问题。面对信号交叉口相位配时问题的优化,本文使用F.韦伯斯特-B.柯布方法对信号配时方案进行优化,并利用遗传算法设计出混合交通条件下的信号配时方案。沿用改进的F.韦伯斯特-B.柯

10、布公式计算了一些参数,为遗传算法服务。 4. 模型的准备 4.1. 相关术语解释 1. 信号交叉口:各种城市道路交通流汇集、交汇、混杂的瓶颈之处; 2. 信号相位:在一个信号周期内分配给一股或多股独立交通流的一组绿、黄、红灯变化的信号时序; 3. 通行能力:饱和交通条件下重要的交叉口交通运行效率指标,是决定交通状态、表征交通供给的最重要的指标之一1; 4. 信号交叉口机动车通行能力:在一定道路、交通、环境、控制条件下,一段时间内能够通过交叉口某一车道或车道组的停车线(或冲突区)的最大车辆流率; 5. 交通冲突:在交叉口安全评价中,交通冲突是在可观测条件下,两个会两个以上道路使用者在同一时间,空

11、间上相互接近,如果其中一方采用非正常交通行为,想转换方向、改变车速、突然停车、交通违章等,除非另一方也采用避险行为,否则,会处于碰撞的境地; 6. 冲突区:导致信号交叉口交通混乱、事故多发的主要根源,就是交叉口处混合交通流产生的大量冲突点。当两股不同流向的交通流同时通过某空间某点时,就会产生交通冲突,该点就称为冲突点,冲突点所在区即为冲突区。 5. 问题一 典型混合交叉路口交通管理方案 以图 1所示信号交叉路口作为一典型混合交叉路口,该交叉口处于普通地区,各个入口的直左、直右机动车道宽度均为3m,坡度为0,基本饱和流量分别为1650、1550veh/h,各进口人行横道双向行人流量为800ped

12、/h。图 1典型信号交叉路口示意图 针对此信号交叉路口,交叉口对机动车采用2相位信号控制,对行人采取只允许行人随本向直行机动车同时通行的控制方式。根据该交叉路口的机动车、自行车、行人的情况,给出具体交通管理方案如下: 1. 两相位控制,周期时长为75s,其中南北方向绿灯时间25s,东西方向绿灯时间40s,黄灯时间3s,各相全红时间为2s,红灯期间允许右转,相位图见图 2; 2. 东西南北进口车道均为2条,其中直左合用车道1条,直右合用车道1条,宽度均为3m; 3. 东西向与南北向的外侧均设有4m宽的供机动车和行人通行的非机动车道和人行道。 图 2交叉路口相位图除此之外,为增加交叉口通行能力,提

13、供了相关改进建议: 1. 信号控制 通过信号灯的设置,从时间上分离产生交通冲突的车流,可采用: (1) 设置自行车专用相位; (2) 两次绿灯法,非机动车绿灯提前启亮,使自行车在时间上优先通过信号交叉口。 2. 渠化分离 通过渠化措施,优化交叉口,在空间上分离产生交通冲突的车流,可采用 (1) 右转弯专用车道; (2) 左转弯专用车道; (3) 左转自行车二次过街。 3. 安全教育 通过安全教育和安全法规制度来规范行人和驾驶员行为,使交叉路口各行进方向的参与者,能遵守交通规则,使各行进的交通车流能规律有序地通过交叉口。 6. 问题二 混合交通交叉路口道路通行能力模型 我国城市道路交通中,机动车

14、时道路交通的主要交通工具,机车与机车之间的相互影响会导致路面交通能力的下降,当机车数过多,或者大量机车通行某处时,就有可能产生拥堵现象;行人作为交通道路上最有可能受伤害的主体,受到极大的保护,机车基于行人优先原则,对行人多以避让,由此道路通行能力受到阻碍;自行车作为主要非机动车交通工具对机动车流的运行影响有较大影响。从自行车的特性分析,其出行距离近,出行时间短,人均占用道路面积较大,需要配套的停车空间多,灵活性大,这些特性既威胁道路交通安全,又降低机动车的通行能力,交叉口处存在机动车与非机动车的交叉交汇,机动车受非机动车的影响更为显著。因此,深入研究机动车与机动车相互影响下、行人和非机动车影响

15、下信号交叉口的通行能力是有必要的,这不仅为信号交叉路口建设、管理、控制和评价提供有效的理论依据,而且也为解决混合交通交叉路口的安全问题提供管理方案2,3。 6.1. 理想状况下道路通行能力模型 信号灯管制十字形交叉的设计通行能力按停车线法计算,停车线法是国内计算信号交叉路口通行能力最常用的方法,停车线法在计算每个周期以第2种方式通过的左转车的最大车辆数时,采用如下公式式中为每个周期第二种方式可能通过交叉口的左转车辆数,为每条直行车道在一个周期内以饱和流率通过的车辆数;为每个周期内实际到达的车辆数。 十字形交叉的设计通行能力为各进口道设计通行能力之和,进口道设计通行能力为各车道设计通行能力之和。

16、根据相关文献,下面直接列出在不考虑行人和非机动车的情况下直行车道、直右车道及直左车道的通行能力。6.1.1. 直行车道设计通行能力 (1)式中:变为绿灯后第一辆车启动并通过停止线的时间(s),可采用2.3s; 直行或右行车辆通过停止线的平均间隔时间(s/pcu); 直行车道通行能力折减系数,可采用0.9。 6.1.2. 直右车道设计通行能力 (2) 式中 一条有直右车道的设计通行能力(pcu/h)。6.1.3. 直左车道设计通行能力 (3)式中 一条有直左车道的设计通行能力(pcu/h); 直左车道中左转车所占比例。6.2. 混合交通条件下道路通行能力模型 上述理想模型主要着眼于机动车交通环境

17、,而针对于我国现行道路状况来说, 混合交通条件下,行人、非机动车与机动车的冲突是导致机动车通行能力下降、延误时间增加以及交通安全系数下降的重要原因。因此,我们分别就行人交通与非机动车交通对信号交叉口通行能力的影响问题建立模型,进行详细的讨论。 6.2.1. 人车冲突区机动车通行能力模型 行人-机动车冲突区是信号交叉口的瓶颈,是计算行人影响下信号交叉口通行能力的重要依据。虽然在交通信号控制下,交叉口内一部分行人-机动车冲突区可以去除,但由于信号周期长度和相位数的限制,交叉口通常仍然存在行人- 机动车冲突区。如图 3 所示,给出了常见的行人-机动车冲突区。 图 3 常见行人-机动车冲突区6.2.1

18、.1. 冲突区道路交叉口通行能力分析 为了能清晰的说明行人-机动车冲突区处通行能力的计算模型,以图 4 所示的简单情形所示,即一支单向车流V 与一支单向人流P 相交。图 4 单向车流与单向人流通过交叉口将车流V 与人流P 各通行一次所需总时间定义为一个“冲突周期” 。在冲突周期内包括车流V与人流P的通行时间、,则有。+车流V 在一个周期内通过冲突区的数量期望值可以分为饱和流部分和非饱和流部分,分别设为和,则其期望值,相应的通行时间。当饱和流通过时行人无法通行;而当非饱和流通过时,若出现可接受空隙行人则会伺机截断车流而通过。同样,人流P 也可以类似的分为饱和流与非饱和流,两部分相应通行时间可设为

19、、。当行人非饱和流部分出现机动车可接受空隙时,等候机动车会阻断人流获得通行。 结合模型一所示的信号交叉口,其允许机动车红灯右转。因此,假设机动车在绿灯放行行人前取得优先权率先到达冲突区,然后行人在机动车流出现足够大的间隙时占据冲突区,此后,在冲突区无行人需要到达等候,则机动车以饱和速率通过而不受任何干扰。据以上分析,设周期内有效绿灯时间为和有效红灯时间,而在一个有效绿灯周期内可能运行着若干个“冲突周期”,对于每个冲突周期,可以和,而有效绿灯时间内无行人到达等候的时间为。综上则可得公式,其排队状态如图 5 所示。图 5 冲突区排队状况图 6.2.1.1.1. 机动车饱和流部分 当机动车流V 饱和流部分通过时,车头时距最小为,设车流饱和流部分通过冲突区时的流速为,车流在信号交叉口的机动车到达率为。则在饱和流部分通过机动车数为: (4)根据上述等式可得 6.2.1.1.2. 机动车非饱和流部分 当机动车之间出现可接受间隙即车头时距大于或等于行人群临界间隙时,行人可截断车流获得通行权。本论文假定车队非饱和流部分车头时距服从负指数分布,则的累积概率分布为:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号