《数字输入脉冲转换成旋转或直线增量运动的电磁执行元件.docx》由会员分享,可在线阅读,更多相关《数字输入脉冲转换成旋转或直线增量运动的电磁执行元件.docx(19页珍藏版)》请在三一办公上搜索。
1、步进电机的选择 (一)步进电机的选择步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。2、静力矩的选择步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载
2、和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)3、电流的选择静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)综上所述选择电机一般应遵循以下步骤:4、力矩与功率换算步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下: P= M =2n/60 P=2nM/60 其P为功率单位为瓦,为每秒角速度,单位为弧度,n
3、为每分钟转速,M为力矩单位为牛顿米 P=2fM/400(半步工作) 其中f为每秒脉冲数(简称PPS) (二)、步进电机应用中的注意点1、步进电机应用于低速场合-每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。2、步进电机最好不使用整步状态,整步状态时振动大。3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然1
4、2伏的电压除12V恒压驱动外也可以采用其他驱动电源,不过要考虑温升。4、转动惯量大的负载应选择大机座号电机。5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。7、电机不应在振动区内工作,如若必须可通过改变电压、电流或加一些阻尼的解决。8、电机在600PPS(0.9度)以下工作,应采用小电流、大电感、低电压来驱动。9、应遵循先选电机后选驱动的原则。光电编码器原理及
5、应用电路 1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、
6、绝对式以及混合式三种。1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光
7、敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是:1.2.1可以直接读出角度坐标的绝对值;1.2.2没有累积误差;1.2.
8、3电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。1.3混合式绝对值编码器混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。2. 光电编码器的应用电路2.1 EPC755A光电编码器的应用EPC755A光电编码器具
9、备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。因此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。图2给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。当光电编码器顺时针旋转时,通道A输出波形超前通道B输出波形90,D触发器输出Q(波形W1)
10、为高电平,Q(波形W2)为低电平,上面与非门打开,计数脉冲通过(波形W3),送至双向计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(波形W4)。当光电编码器逆时针旋转时,通道A输出波形比通道B输出波形延迟90,D触发器输出Q(波形W1)为低电平,Q(波形W2)为高电平,上面与非门关闭,其输出为高电平(波形W3);此时,下面与非门打开,计数脉冲通过(波形W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数。汽车方向盘顺时针和逆时针旋转时,其最大旋转角度均为两圈半,选用分辨率为360个脉冲/圈的编码器,其最大输出脉冲数为900个;实际使用
11、的计数电路用3片74LS193组成,在系统上电初始化时,先对其进行复位(CLR信号),再将其初值设为800H,即2048(LD信号);如此,当方向盘顺时针旋转时,计数电路的输出范围为20482948,当方向盘逆时针旋转时,计数电路的输出范围为20481148;计数电路的数据输出D0D11送至数据处理电路。实际使用时,方向盘频繁地进行顺时针和逆时针转动,由于存在量化误差,工作较长一段时间后,方向盘回中时计数电路输出可能不是2048,而是有几个字的偏差;为解决这一问题,我们增加了一个方向盘回中检测电路,系统工作后,数据处理电路在模拟器处于非操作状态时,系统检测回中检测电路,若方向盘处于回中状态,而
12、计数电路的数据输出不是2048,可对计数电路进行复位,并重新设置初值。2.2 光电编码器在重力测量仪中的应用采用旋转式光电编码器,把它的转轴与重力测量仪中补偿旋钮轴相连。重力测量仪中补偿旋钮的角位移量转化为某种电信号量;旋转式光电编码器分两种,绝对编码器和增量编码器。增量编码器是以脉冲形式输出的传感器,其码盘比绝对编码器码盘要简单得多且分辨率更高。一般只需要三条码道,这里的码道实际上已不具有绝对编码器码道的意义,而是产生计数脉冲。它的码盘的外道和中间道有数目相同均匀分布的透光和不透光的扇形区(光栅),但是两道扇区相互错开半个区。当码盘转动时,它的输出信号是相位差为90的A相和B相脉冲信号以及只
13、有一条透光狭缝的第三码道所产生的脉冲信号(它作为码盘的基准位置,给计数系统提供一个初始的零位信号)。从A,B两个输出信号的相位关系(超前或滞后)可判断旋转的方向。由图3(a)可见,当码盘正转时,A道脉冲波形比B道超前/2,而反转时,A道脉冲比B道滞后/2。图3(b)是一实际电路,用A道整形波的下沿触发单稳态产生的正脉冲与B道整形波相与,当码盘正转时只有正向口脉冲输出,反之,只有逆向口脉冲输出。因此,增量编码器是根据输出脉冲源和脉冲计数来确定码盘的转动方向和相对角位移量。通常,若编码器有N个(码道)输出信号,其相位差为/ N,可计数脉冲为2N倍光栅数,现在N=2。图3电路的缺点是有时会产生误记脉
14、冲造成误差,这种情况出现在当某一道信号处于高或低电平状态,而另一道信号正处于高和 低之间的往返变化状态,此时码盘虽然未产生位移,但是会产生单方向的输出脉冲。例如,码盘发生抖动或手动对准位置时(下面可以看到,在重力仪测量时就会有这种情况)。图4是一个既能防止误脉冲又能提高分辨率的四倍频细分电路。在这里,采用了有记忆功能的D型触发器和时钟发生电路。由图4可见,每一道有两个D触发器串接,这样,在时钟脉冲的间隔中,两个Q端(如对应B道的74LS175的第2、7引脚)保持前两个时钟期的输入状态,若两者相同,则表示时钟间隔中无变化;否则,可以根据两者关系判断出它的变化方向,从而产生正向或反向输出脉冲。当某
15、道由于振动在高、低间往复变化时,将交替产生正向和反向脉冲,这在对两个计数器取代数和时就可消除它们的影响(下面仪器的读数也将涉及这点)。由此可见,时钟发生器的频率应大于振动频率的可能最大值。由图4还可看出,在原一个脉冲信号的周期内,得到了四个计数脉冲。例如,原每圈脉冲数为1000的编码器可产生4倍频的脉冲数是4000个,其分辨率为0.09。实际上,目前这类传感器产品都将光敏元件输出信号的放大整形等电路与传感检测元件封装在一起,所以只要加上细分与计数电路就可以组成一个角位移测量系统(74159是4-16译码器)。如何正确选择伺服电机和步进电机1,如何正确选择伺服电机和步进电机? 主要视具体应用情况
16、而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2,选择步进电机还是伺服电机系统? 其实,选择什么样的电机应根据具体应用情况而定,各有其特点。请见下表,自然明白。 步进电机系统 伺服电机系统 力矩范围 中小力矩(一般在20Nm以下) 小中大,全范围 速度范围 低(一般在2000RPM以下,大力矩电机小于1000RPM) 高(可达5000RPM),直流伺服电机更可达12万转
17、/分 控制方式 主要是位置控制 多样化智能化的控制方式,位置/转速/转矩方式 平滑性 低速时有振动(但用细分型驱动器则可明显改善) 好,运行平滑 精度 一般较低,细分型驱动时较高 高(具体要看反馈装置的分辨率) 矩频特性 高速时,力矩下降快 力矩特性好,特性较硬 过载特性 过载时会失步 可310倍过载(短时) 反馈方式 大多数为开环控制,也可接编码器,防止失步 闭环方式,编码器反馈 编码器类型 - 光电型旋转编码器(增量型/绝对值型),旋转变压器型 响应速度 一般 快 耐振动 好 一般(旋转变压器型可耐振动) 温升 运行温度高 一般 维护性 基本可以免维护 较好 价格 低 高 3,如何配用步进
18、电机驱动器? 根据电机的电流,配用大于或等于此电流的驱动器。如果需要低振动或高精度时,可配用细分型驱动器。对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。 4,2相和5相步进电机有何区别,如何选择? 2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。5相电机则振动较小,高速性能好,比2相电机的速度高3050%,可在部分场合取代伺服电机。 5,何时选用直流伺服系统,它和交流伺服有何区别? 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和
19、民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 6,使用电机时要注意的问题? 上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电
20、流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查:1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%100%的电机,因为步进电机不能过负载运行,哪怕是瞬间,都
21、会造成失步,严重时停转或不规则原地反复动。 2)上位控制器来的输入走步脉冲的电流是否够大(一般要10mA),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS输入型的驱动器。3)启动频率是否太高,在启动程序上是否设置了加速过程,最好从电机规定的启动频率内开始加速到设定频率,哪怕加速时间很短,否则可能就不稳定,甚至处于惰态。 4)电机未固定好时,有时会出现此状况,则属于正常。因为,实际上此时造成了电机的强烈共振而导致进入失步状态。电机必须固定好。5)对于5相电机来说,相位接错,电机也不能工作。 8, 我想通过通讯方式直接控制伺服电机,可
22、以吗? 可以的,也比较方便,只是速度问题,用于对响应速度要求不太高的应用。如果要求快速的响应控制参数,最好用伺服运动控制卡,一般它上面有DSP和高速度的逻辑处理电路,以实现高速高精度的运动控制。如S加速、多轴插补等。9, 用开关电源给步进和直流电机系统供电好不好? 一般最好不要,特别是大力矩电机,除非选用比需要的功率大一倍以上的开关电源。因为,电机工作时是大电感型负载,会对电源端形成瞬间的高压。而开关电源的过载性能不好,会保护关断,且其精密的稳压性能又不需要,有时可能造成开关电源和驱动器的损坏。可以用常规的环形或R型变压器变压的直流电源。 10,我想用10V或420mA的直流电压来控制步进电机
23、,可以吗? 可以,但需要另外的转换模块。 11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制? 可以,需要配一个编码器转测速机信号模块。12, 伺服电机的码盘部分可以拆开吗? 禁止拆开,因为码盘内的石英片很容易破裂,且进入灰尘后,寿命和精度都将无法保证,需要专业人员检修。13,步进和伺服电机可以拆开检修或改装吗? 不要,最好让厂家去做,拆开后没有专业设备很难安装回原样,电机的转定子间的间隙无法保证。磁钢材料的性能被破坏,甚至造成失磁,电机力矩大大下降。 14,几台伺服电机可以作同步运行吗? 我们的产品是可以的。15,伺服控制器能够感知外部负载的变化吗? 我们的产品是可以的
24、,如遇到设定阻力时停止、返回或保持一定的推力跟进。 16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗? 原则上是可以的,但要搞清楚电机的技术参数后才能配用,否则会大大降低应有的效果,甚至影响长期运行和寿命。最好向供应商咨询后再决定。17,使用大于额定电压值的直流电源电压驱动电机安全吗? 正常来说这不是问题,只要电机在所设定的速度和电流极限值内运行。因为电机速度与电机线电压成正比,因此选择某种电源电压不会引起过速,但可能发生驱动器等故障。 此外, 必须保证电机符合驱动器的最小电感系数要求,而且还要确保所设定的电流极限值小于或等于电机的额定电流。 事实上,如果你能在你设计的装置中让电机
25、跑地比较慢的话 (低于额定电压),这是很好的。 以较低的电压 (因此比较低的速度) 运行会使得电刷运转反弹较少,而且电刷/换向器磨损较小,比较低的电流消耗和比较长的电机寿命。 另一方面,如果电机大小的限制和性能的要求需要额外的转矩及速度,过度驱动电机也是可以的,但会牺牲产品的使用寿命。 18, 我如何为我的应用选择适当的供电电源? 推荐选择电源电压值比最大所需的电压高10%-50%。此百分比因Kt, Ke,以及系统内的电压降而不同。驱动器的电流值应该足够传送应用所需的能量。记住驱动器的输出电压值与供电电压不同, 因此驱动器输出电流也与输入电流不相同。为确定合适的供电电流,需要计算此应用所有的功
26、率需求,再增加5%。按I = P/V公式计算即可得到所需电流值。19,对于伺服驱动器我可以选择那种工作方式? 请见下表(以下模式并不全部存在于所有型号的驱动器中)开环模式 输入命令电压控制驱动器的输出负载率。此模式用于无刷电机驱动器,和有刷电机驱动器的电压模式相同。电压模式 输入命令电压控制驱动器的输出电压。此模式用于有刷电机驱动器,和无刷电机驱动器的开环模式相同。 电流模式(力矩模式) 输入命令电压控制驱动器的输出电流(力矩)。驱动器调整负载率以保持命令电流值。如果驱动器可以速度或位置环工作,一般都含有此模式。 IR补偿模式 输入命令控制电机速度。IR补偿模式可用于控制无速度反馈装置电机的速
27、度。驱动器会调整负载率来补偿输出电流的变动。当命令响应为线性时,在力矩扰动情况下,此模式的精度就比不上闭环速度模式了。 Hall速度模式 输入命令电压控制电机速度。此模式利用电机上hall传感器的频率来形成速度闭环。 由于hall传感器的低分辨率,此模式一般不用于低速运动应用。 编码器速度模式 输入命令电压控制电机速度。此模式利用电机上编码器脉冲的频率来形成速度闭环。由于编码器的高分辨率,此模式可用于各种速度的平滑运动控制。 测速机模式 输入命令电压控制电机速度。此模式利用电机上模拟测速机来形成速度闭环。由于直流测速机的电压为模拟连续性,此模式适合很高精度的速度控制。当然,在低速情况下,它也容
28、易受到干扰。 模拟位置环模式(ANP 模式) 输入命令电压控制电机的转动位置。这其实是一种在模拟装置中提供位置反馈的变化的速度模式(如可调电位器、变压器等)。在此模式下,电机速度正比于位置误差。且具有更快速的响应和更小的稳态误差。 20,驱动器和系统如何接地? a. 如果在交流电源和驱动器直流总线(如变压器)之间没有隔离的话,不要将直流总线的非隔离端口或非隔离信号的地接大地,这可能会导致设备损坏和人员伤害。因为交流的公共电压并不是对大地的,在直流总线地和大地之间可能会有很高的电压。 b. 在多数伺服系统中,所有的公共地和大地在信号端是接在一起的。多种连接大地方式产生的地回路很容易受噪音影响而在
29、不同的参考点上产生电流。c. 为了保持命令参考电压的恒定,要将驱动器的信号地接到控制器的信号地。 它也会接到外部电源的地,这将影响到控制器和驱动器的工作(如:编码器的5V电源)。 d. 屏蔽层接地是比较困难的,有几种方法。正确的屏蔽接地处是在其电路内部的参考电位点上。这个点取决于噪声源和接收是否同时接地,或者浮空。要确保屏蔽层在同一个点接地使得地电流不会流过屏蔽层。21, 减速器为什么不能和电机正好相配在标准转矩点? 如果考虑到电机产生的经过减速器的最大连续转矩,许多减速比会远远超过减速器的转矩等级。 如果我们要设计每个减速器来匹配满转矩,减速器的内部齿轮会有太多组合(体积较大、材料多)。 这
30、样会使得产品价格高,且违反了产品的“高性能、小体积”原则。22,我如何选择使用行星减速器还是正齿轮减速器? 行星减速器一般用于在有限的空间里需要较高的转矩时,即小体积大转矩,而且它的可靠性和寿命都比正齿轮减速器要好。正齿轮减速器则用于较低的电流消耗,低噪音和高效率低成本应用。部分伺服驱动器故障检查方法参考: 现象 可能原因 纠正方法 示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出 电流监控输出端没有与交流电源相隔离(变压器) 可以用直流电压表检测观察 电机在一个方向上比另一个方向跑得快 无刷电机的相位搞错 检测或查出正确的相位 在不用于测试时,测试/偏差开关打在测试位置 将测试/
31、偏差开关打在偏差位置 偏差电位器位置不正确 重新设定 电机失速 速度反馈的极性搞错 可以尝试以下方法:1. 如果可能,将位置反馈极性开关打到另一位置。(某些驱动器上可以)2. 如使用测速机,将驱动器上的TACH+和TACH-对调接入。3. 如使用编码器,将驱动器上的ENC A和ENC B对调接入。4. 如在HALL速度模式下,将驱动器上的HALL-1和HALL-3对调,再将Motor-A和Motor-B对调接好。 编码器速度反馈时,编码器电源失电 检查连接5V编码器电源。确保该电源能提供足够的电流。如使用外部电源,确保该电压是对驱动器信号地的。 LED灯是绿的,但是电机不动 一个或多个方向的电
32、机禁止动作 检查+INHIBIT 和 INHIBIT 端口命令信号不是对驱动器信号地的 将命令信号地和驱动器信号地相连 上电后,驱动器的LED灯不亮 供电电压太低,小于最小电压值要求 检查并提高供电电压 当电机转动时, LED灯闪烁 HALL相位错误 检查电机相位设定开关(60/120)是否正确。 多数无刷电机都是120相差。 HALL传感器故障 当电机转动时检测Hall A, Hall B, Hall C的电压。电压值应该在5VDC和0之间。 LED灯始终保持红色 存在故障 原因: 过压、欠压、短路、过热、驱动器禁止、HALL无效 23, 何为负载率(duty cycle)? 负载率(dut
33、y cycle)是指电机在每个工作周期内的工作时间/(工作时间+非工作时间)的比率。如果负载率低,就允许电机以3倍连续电流短时间运行,从而比额定连续运行时产生更大的力量。24,标准旋转电机的驱动电路可以用于直线电机吗? 一般都是可以的。你可以把直线电机就当作旋转电机,如直线步进电机、有刷、无刷和交流直线电机。具体请向供应商咨询。25,直线电机是否可以垂直安装,做上下运动? 可以。根据用户的要求,垂直安装时我们可以加装动子滑块平衡装置或加装导轨抱闸刹车。26,在同一个平台上可以安装多个动子吗? 可以。只要几个动子之间不互相妨碍即可。27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上? 可
34、以。只要几个动子之间不互相妨碍即可。28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境? 可以提供。具体请与我们联系。29,使用直线电机比滚珠丝杆的线性电机有何优点? 由于定子和动子之间没有机械连接,所以消除了背隙、磨损、卡死问题,运动更加平滑。突出了更高精度、高速度、高加速度、响应快、运动平滑、控制精度高、可靠性好体积紧凑、外形高度低、长寿命、免维护等特点。30,你们的滑台可以做多个组合一起使用吗? 是的。可以组合为XY, XZ, YZ, XYZ及其它灵活组合。如何选择合适的步进电机如何选择合适的步进电机1. 负载分类:(1)Tf力矩负载:Tf = Gr G 重物重
35、量 r 半径 G=mg (g=9.8N/kg)(2)TJ惯性负载:J = M(R12+R22)/ 32 (Kgcm)M:质量R1:外径R2:内径TJ = Jdw/dt dw/dt 为角加速度 2.力矩曲线图的说明 力矩曲线图是步进电机输出特性的重要表现,以下是我们对其中关键词语的解释。 说明:1. 工作频率点: 表示步进电机在该点的转速值。单位:Hzn=*Hz / (360*D)n 转/秒Hz 该点的频率值D 电路的细分值, 步进电机的步距角例:1.8步进电机,在1/2细分驱动的情况下(即每步0.9)500Hz 时,其速度是 1.25转/秒2. 起动区域: 步进电机可以直接起动或停止的区域。3
36、. 运行区域: 在这个区域里,电机不能直接运行,必须先要在起动区域 内起动,然后通过加速的方式,才能到达该工作区域内。同样,在该区域内,电机也不能直接制动,否则就会造成失步,必须通过减速的方式到起动区域内,在进行制动。4. 最大起动频率点:步进电机在空载情况下,最大的直接起动速度点。5. 最大运行频率点:步进电机在空载情况下,可以达到的最大的运行速度点。6. 起动力矩:步进电机在特定的工作频率点下,直接起动可带动的最大力矩负载值。7. 运行力矩:步进电机在特定的工作频率点下,运行中可带动的最大力矩负载值。由于运动惯性的原因,所以,运行力矩要比起动力矩大。 3 加速和减速运动的控制 当一个系统的
37、工作频率点在力矩曲线图的运行区域内时,如何在最短的时间内加速,减速就成了关键。如下图示,步进电机的动态力矩特性一般在低速时为水平直线状,在高速时,由于电感的影响,很快下滑。 (1)直线加速运动 已知电机负载为TL,要从F0 在最短时间tr内加速到F1,求tr 和 加速脉频率F(t)A确定TJ,一般TJ =70% Tm。Btr = 1.8*10-5*J*(F1-F0)/ (TJ-TL)C.F(t)(F1F0)ttrF0 , 0 t tr (2)指数加速运动 已知电机负载为TL,要从F0 在最短时间tr内加速到F1,求tr 和 加速脉频率F(t)A.确定TJ0,TJ1一般TJ0 =70% Tm0,
38、TJ1 =70% Tm1,TL=60%Tm1Btr = F4*ln(TJ0-TL)/(TJ1-TL)C.F(T)F2*1-e(-t/F4)F1 , 0 t tr 其中,F2=(TL-TJ0)*(F1-F0)/(TJ1-TJ0)F4=1.8*10-5*J*F2 /( TJ0-TL) J 为电机转子和负载的转动惯量,为每一步的度数,整步运行时为电机步距角。至于减速的控制,只要将上诉的加速脉频率反过来进行即可。 4 振动和噪音 一般来说,步进电机在空载运行时,在200pps左右会有一个很严重的振动,甚至会产生失步的现象,这是由于电机转子是一个有质量的物体,当电机运行的频率接近到转子的固有频率,振动就
39、产生了,一般有几种解决的办法:1. 避开振动区,使电机的工作频率不在这个范围内。2. 采用细分的驱动方式,使原来1步完成的动作分几步完成,减少振动,一般半步运动时,电机的力矩比整步时少15%,采用正弦波电流控制时,力矩减小为30%。 步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制
40、方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。一、控制精度不同两相混合式步进电机步距角一般为3.6、 1.8,五相混合式步进电机步距角一般为0.72 、0.36。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8、0.9、0.72、0.36、0.18、0.09、0.072、0.036,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交
41、流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360/10000=0.036。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360/131072=9.89秒。是步距角为1.8的步进电机的脉冲当量的1/655。二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动
42、器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。四、过载能力不同步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩
43、为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。五、运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。六、速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需
44、要200400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。 步进电机是机电一体化产品中关键部件之一,通常被用作定位控制
45、和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。 选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。 选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通
46、过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。 选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。 选择步进电机需要进行以下计算: (1)计算齿轮的减速比 根据所要求脉冲当量,齿轮减速比i计算如下: i=(.S)/(360.) (1-1) 式中 -步进电机的步距角(o/脉冲) S -丝杆螺距(mm) -(mm/脉冲) (2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。 Jt=J1+(1/i2)(J2+Js)+W/g(S/2)2 (1-2) 式中Jt -折算至电机轴上的惯量(Kg.cm.s2) J1、J2 -齿轮惯量(Kg.cm.s2) Js -丝杆惯量(