声学包设计与优化 综合ppt课件.pptx

上传人:小飞机 文档编号:1885866 上传时间:2022-12-23 格式:PPTX 页数:111 大小:13.95MB
返回 下载 相关 举报
声学包设计与优化 综合ppt课件.pptx_第1页
第1页 / 共111页
声学包设计与优化 综合ppt课件.pptx_第2页
第2页 / 共111页
声学包设计与优化 综合ppt课件.pptx_第3页
第3页 / 共111页
声学包设计与优化 综合ppt课件.pptx_第4页
第4页 / 共111页
声学包设计与优化 综合ppt课件.pptx_第5页
第5页 / 共111页
点击查看更多>>
资源描述

《声学包设计与优化 综合ppt课件.pptx》由会员分享,可在线阅读,更多相关《声学包设计与优化 综合ppt课件.pptx(111页珍藏版)》请在三一办公上搜索。

1、材料、设计及优化,车辆声学包开发技术,报告内容,声学包开发的意义,Part 1,声学包开发的意义,路面/底盘噪声源,动力传动系噪声源,Structure-borne Noise,Airborne Noise,传动系统通过车身/底盘的传播,路面/底盘通过车身的传播,Wind noise,声学包开发的意义,路面/底盘噪声源,动力传动系噪声源,Structure-borne Noise,Airborne Noise,传动系统通过车身/底盘的传播,路面/底盘通过车身的传播,Wind noise,声学包解决方案,声学包开发的意义,Noise Performance,Cost,Weight,Space,A

2、 balanced Solution,声学包开发的内容,Part2,整车NVH开发流,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包开发流程,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包指标设定及分解地板/车门等TL地毯传递损失中控台传递损失发动机舱/乘客舱吸声系数舱盖吸声性能顶衬吸声性能门吸声性能,声学包设计及验证整车声学包模型FEM/CADBOM/材料参数声学包模型验证现场TL测试Ideal load测试Real Load测试声学包设计开发满足目标性能的声学包开发,声学包调校及优化密封性能检测NPA分析声学包优化声学性能成本/重量/尺寸材料类型

3、/厚度,声学包对标测试材料性能对标吸声材料性能隔声材料性能子系统性能对标面板子系统座椅等子系统整车性能对标语音清晰度面板贡献量,声学包开发流程,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包对标测试材料性能对标吸声材料性能隔声材料性能子系统性能对标面板子系统座椅等子系统整车性能对标语音清晰度面板贡献量,吸声系数测试法向入射吸声系数无规入射吸声系数传递损失测试驻波管法试验室法阻尼材料测试Oberst 方法SAE 方法,材料性能测试,传递损失测试标准混响室/全消声室测试 混响室/混响室测试现场传递损失测试传递损失仿真(VA One)子系统吸声量测试标准混响室ABS Cabin

4、,子系统性能测试,声学包开发流程,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包指标设定及分解地板/车门等TL地毯传递损失中控台传递损失发动机舱/乘客舱吸声系数舱盖吸声性能顶衬吸声性能门吸声性能,2022/12/23,声学包指标设定与分解,声学包开发流程,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包设计及验证整车声学包模型FEM/CADBOM/材料参数声学包模型验证现场TL测试Ideal load测试Real Load测试声学包设计开发满足目标性能的声学包开发,整车声学包设计,SEA 模版模型CAD/FE 输入材料数据库各向同性材料:密度,弹性模量

5、,泊松比,阻尼损耗因子各向异性材料:密度,弹性模量,泊松比,阻尼损耗因子多孔吸声材料:吸声系数/表面阻抗,孔隙率,流阻、弯曲率,温度特征长度,粘滞特征长度阻尼材料:密度,阻尼损耗因子,弹性模量,泊松比质量材料:面密度 or IL or TL激励谱库不同工况下各面板声激励,声学包模型开发,理想载荷及工作载荷作用下的整车测试载荷谱及车内声场响应测试子系统(如火墙、地板等)特性的测试传递损失测试,整车声学包模型验证,整车状态下的NPA分析,明确关键传递路径,整车NPA诊断,声学包设计与验证,地板、火墙等板件传递损失优化密封、填充等传递损失优化,部件子系统优化,发动机舱、顶衬、后备箱等吸声性能设计,部

6、件子系统优化,声学包开发流程,指标设定/分解,标杆研究,NVHCAE/DVP验证,样车调校,声学包调校及优化密封性能检测NPA分析声学包优化声学性能成本/重量/尺寸材料类型/厚度,密封性检测盐雾法超声波法声学包优化NPA 分析优化目标:声学性能优化约束:成本/重量/尺寸优化变量:材料类型/厚度,整车声学包调校,总结,整车NVH开发流程中的声学包开发工作包括:对标测试:吸声、隔声、阻尼,质量、密度,空间分布、贡献量,声源级等等,关键制定合理的测试方案指标分解:CAE分析:SEA模型、材料物性参数测试、声源特性参数、NPA、制定优化方案实车调教:实车NVH测试、检漏测试、部件子系统优化等,声学包材

7、料特性及测试方法,Part 3,声学材料分类,本节内容,吸声材料物理特性,多孔吸声材料,吸声材料:具有大量的内外联通的微小孔隙和孔洞吸声机理黏滞性和内摩擦效应热传导效应吸声性能评价指标法向入射吸声系数混响室内测试吸声系数,混响室法: ISO 354/GB T20247/ASTM C423声学 混响室吸声测量,测量结果为无规入射吸声系数驻波管法:ISO 10532/ASTM E-1050/ASTM C384,测量结果为法相入射吸声系数,吸声系数测试方法和标准,ISO 354 / ASTM C423 要求样本太大,由SAE 声学材料委员会主持研究标准的小样本混响室测试相当于ISO 354 / AS

8、TM C423混响室体积的1/10 (甚至更小),每个混响箱须利用标准混响室进行标定利用脉冲响应法及施罗德原理, 混响箱,声学材料性能本构方程Johnson-Champoux-Allard 开发5参数方程airflow resistivity , open porosity , tortuosity viscous characteristic length , thermal characteristic length ,预测方法,Flow resistivity:流阻,气流流过结构的阻力,定义为其中 p 为气流流过材料的压力损失Vairflow 为气体流量,d为材料厚度测试标准:EN 29

9、053 std (ISO European std),几何物理参数,Open Porosity:开孔孔隙率,材料内部流体体积与材料总体积的比值定义:闭孔孔隙率为零,几何物理参数,开孔孔隙率测试(No Std)利用理想气体恒温压缩(玻意耳定律),几何物理参数测试,Tortuosity:弯曲率,无量纲量,描述流体流过材料路径的弯曲程度定义: 其中,v 为流体流速,V 为均一体积测试方法(No Std):电学方法,几何物理参数,Viscous characteristic lengths:粘滞特征长度描述材料及内部流体相互作用的粘性力,定义:Thermal characteristic length

10、s:温度特征长度描述材料及内部流体之间的温度交换,定义:其中,v 为流体流速,V 为内部流体体积, S 为内部孔隙与材料间的接触面积,几何物理参数,Inverse method:遗传算法,最小价值函数解,几何物理参数测试,analytical inversion method,几何参数测试,几何物理参数测试,材料拓扑分类Rigid Frame:结构远远强于内部气体,如聚合物纤维、穿孔板等Limp:材料密度与内部气体密度相当,结构非自支撑,多是纤维类Elastic frame:结构与内部流体相互作用,如岩棉,多孔吸声材料分类,聚合物纤维:Rigid Frame,软玻璃纤维:Limp,岩棉: El

11、astic frame,Poros-Elastic:需要知道力学参数杨氏模量(体积模量)泊松比内损耗因子,力学性能参数,准静态测试方法(No Std)机械阻抗和侧向变形,力学性能测试,准静态方法有限元静力学仿真:任意确定一个弹性模量和损耗因子,选择不同的泊松比计算,可以获得 T 随泊松比变化的函数利用试验测试获得的 T 和仿真的结果可以得到材料的泊松比,力学性能测试,准静态方法有限元静力学仿真:确定泊松比,变化不同的弹性模量可以获得压缩刚度 K 随杨氏模量变化的函数利用试验测试的 K 和仿真的结果可以得到材料的杨氏模量,力学性能测试,隔声材料物理特性,声障:隔断噪声从一个空间向其临近空间的传播

12、反射能力强,吸声性能差材料密实,透射声能小STL:传递损失,隔声材料(声障),隔声原理:质量定律 其中f为频率,w为面密度双墙结构:同质量的双层墙比单层墙隔声量大5-10dB柔性材料:防止材料与结构共振非开孔材料大质量,隔声材料(声障),典型声障材料Thermoplastic barriers with fillers(high mass per surface area)Barriers with fiber or foam decouplers Fiber/mastic/fiber constructions Lightweight impervious membranes 障板产品:地板

13、系统、火墙绝缘板、密封材料,隔声材料(声障),各种 STL 测试方法,SAE J1400 空气声隔声性能的试验室测试方法ASTM E90 / ISO 140空气声隔声性能的标准试验室测试方法ISO 15186-1声强测试法,SAE J1400,STL测试要求:混响室-半消声室参考样本(均匀柔性面板)随机噪声测量声源及半消声室内SPL测试样本随机噪声测量声源及半消声室内SPL,ISO140/ASTM E90,STL测试要求:混响-混响测试,Audio Ampllifier,Internal light absorption,Walls with TL of 30 dB at 100 Hz,Mic

14、rophones system,Steel plate and sample position,STL测试要求:混响-全消,ISO 15186 声强法,阻尼材料物理特性,通常为聚合物材料,用于面板表面降低 / 耗散振动耗散过程将机械能转化为热能常见阻尼产品:Asphalt Melt SheetsFoil Constrained Layer DampersSpray On ( Epoxy, Water based)Expandable Patch Constrained Layer (PCL)Laminated Steel Sheet,阻尼材料,阻尼材料应用效果,阻尼材料,应用FloorDash

15、 panelRoofDoorsBrakes,阻尼材料,SAE J671利用基础板自由振动衰减率测试复合材料振动阻尼SAE J1637 利用支撑钢梁测试复合材料振动阻尼的试验室方法ASTM E756测试材料振动阻尼的方法,阻尼损耗因子测试标准,通过振动衰减率测试阻尼的方法可以测试材料的各种应用对阻尼的影响可以获得特定频率和随温度变化的阻尼不能测试复模量信息测试要求基础板件尺寸:500 x 500 x 6 mm共振频率 145 to 165 Hz,常温下自由振动衰减率不超过3dB,SAE J671 测试方法,2022/12/23,SAE J671,可以在特定的频率和温度下激励阻尼杆确定共振频率,并

16、通过半功率带宽方法计算阻尼损耗因子对其它振动激励和温度下的进行重复测量SAE J1637 用于测试复合的损耗因子,ASTM E756用于测试独立的材料,Oberst Bar-SAE J1637/ASTM E-756,T&S 解决方案,Solutions 汇总,Kundt tube:阻抗管系统,SCS 9020B 系列驻波管吸声系数复反射系数复表面阻抗传递损失复质量密度复体积模量,ISO standard 10534-2 it is not very good actually and we do not recommend to follow it in total.Our recommend

17、ation it is to use the positions M1 and M2 or M2 and MII which are the original positions in the earlier ISO and are also the best one in our experience.Mic. Positions R and MI have been introduced due to the latest revision of ISO 10534-2 which requires a higher Microphones distance for low frequen

18、cies. However, if you want to use position R, you shall move the sample about 15cm away to assure a minimum distance between the Mic. R and the sample. You just have to move backward the piston, it is very simple.,Kundt tube:吸声系数测试配置,TL 测试没有相关的ISO或者ASTM标准3 microphones method or “single” load TL Modu

19、lus only4 microphones method or “two-loads” TL Modulus, f, Zc,Kundt tube:吸声系数测试配置,From ISO 10534 it can be seen that Sound absorption coefficient of the material can be determined using Standardized Kundt apparatus with 2 methods:SWT “standing wave ratio” and TF “transfer function method”While the S

20、WT intrinsically get to single Frequency values, steady state sinusoidal excitation, the TF is based on FFT and FRF so it get to expressed in a full spectrumA problem: how to derive 1/3 or 1/1 octave values from TF method?Common sense says: take the values at the Frequencies corresponding to 1/3 oct

21、ave bands nominal value!,New methodology based on the measurement of the reverberation time in the tube.It can be considered a kind of hybrid among ISO 10534 but it is more precise and energetically correct.The sound signal is an exponential sine sweep of which it is measured the Impulse Response Fu

22、nction IRF.By convoluting the IFR with 1/3 octaves IIR we obtain the from a “whole” 1/3 octave bands and not just from a single Frequency line!,Sine Sweep,IRF,Kundt device with add.on elements for T60,Kundt Tube extended metodologies (T60),Everything is compatible with standard Kundt deviceCircled i

23、tems are add-on for T60Squared items are standard,Impulse Response (from T60 measurment)A new method for the measurement of single and coupled absorption coefficients It is based on the reverberation time in the Kundt tubeThe method produces 1/3 octave band sound absorption values and complies with

24、ISO-ASTM results but resolves ambiguities in the conversion of FFT values into 1/3 octave values. The sound energy is injected at side and moves in both directions and build up the standing wavesAfter each impact of the plane waves with the samples at the ends the intensity of the waves is reduced y

25、elding to the concept of Reverberation TimeReverberation time (T60) is obtained from the measurement of the impulse response using a methodology known as “exponential sine sweep”:,Squared Impulse Response and Schroeder back-integration to evaluate the reverberation time in the tube with an exception

26、al S/N ratio.,Comparison of results for 0 using ISO-ASTM method (TF) and the Impulse Response (TF) for T60 evaluation,Transmission Loss measurements in a tube can also be performed.The excitation signal is a sine sweep and the impulse response of each microphone position is determined. The maxima pe

27、aks shift of the measurements gives the distance x1 to x4 and the amplitude coefficient of the Complex Pressure function are determined and used to estimated the coefficient of Transfer Function Matrix,Kundt Tube extended metodologies (T60),ABS Cabine: 混响箱系统,SCS 9031 ABS Cabine样本尺寸 1m*1.2m频率范围: 500

28、8000Hz 1/1 Octave 315 8000 Hz 1/3 Octave空间5个测试点,内部配置自动旋转定位装置;墙壁由多层复合结构制成,隔声量优于20dB(100Hz);专业后处理软件:基于施罗德原理,Windows XP,SCS9023流阻测试(EN 29053)电子速度控制器标定杯可调样品夹具可替换凸轮直径100mm管体,包括活塞和齿轮传动电机1/2“ 麦克风及附件专业后处理软件,Flow Resistivity:流阻测试系统,SCS 9028 开孔孔隙率测试适用于开孔性材料测试,如 纤维、毛毡、泡沫等高精度驱动控制,微米级空腔压力差为0.3-1 mm Hg之间测试精度优于 1

29、%,Porosity:开孔率测试系统,SCS 9025 弯曲率测试系统(No Std)圆柱形水箱、测量箱试样夹具、电极、管路及连接件桌面型宽频带功率推动器,带有高、低通滤波器专业测量分析软件包,Turtuosity:弯曲率测试系统,PAM-RC RoKCellsoftware determine parameters related to visco-inertial and thermal dissipation inside a porous material following JCAL (Johnson Champoux Allard Lafarge) model. It allows

30、 for the determination of 5 parameters: the static air flow resistivity, the high frequency limit of the dynamic tortuosity, the viscous and thermal characteristic lengths the static thermal permeability. It is “unique” for 2 reasons:the implemented method consists in an analytical inversion of all

31、non-directly measurable parameters: it does not rely on any curve fitting; method described by Panneton & Olny in their 2006 and 2008 publications. It allows the determination of the static thermal permeability:a parameter introduced by Lafarge et al. to improve the description of the thermal dissip

32、ation inside porous media.,PAM-RC Software,PAM-RC RoKCellsoftwareRoKCell main panel:IN the example it shows Normal incidence absorption coefficient measured vs. estimated resultscharacterization windows for visco-inertial (tortuosity, viscous characteristic length) main parameter is complex mass den

33、sity.Characterization windows for thermal parameters (thermal characteristic length, static thermal permeability) main parameter is Bulk modulus,PAM-RC Software,PAM-RC RoKCellsoftware - How it works? As simple as 1, 2 and 3Preliminary:Get Kundt tube data: Complex impedance, TL, complex mass density

34、and Bulk modulusGet Open porosity or try a first guess (0.8 to 0.9)Step 1Adjust cursors in the characterization windows for visco-inertial (tortuosity, viscous characteristic length) main parameter is complex mass density in the low frequency range until obtaining a good correspondance between exper

35、imental data and theoretical ones Step 2Adjust cursors in the Characterization windows for thermal parameters (thermal characteristic length, static thermal permeability) main parameter is Bulk modulus - in the mid frequency range until obtaining a good correspondance between experimental data and t

36、heoretical ones Step 3Go to PAM-RC RoKCell main panel (Normal incidence absorption coefficient, TL, or Impedance) and adjust porosity to obtain the best correspondance between measured vs. estimated resultsValidationResults check: Run “Auto” mode to estimate the whole set of parameters and check if

37、the previous analytical results are confirmed.,Standard physical model is JCAL with 6 parametersAlternatively it also works based on Delany and Bazley model with Flow resistivity as single parameter All experimental data, estimated data and other information are stored in “txt” readable files.,PAM-R

38、C Software,SCS 9026 弹性测试测试系统动态杨氏模量,动刚度,阻尼损耗因子等钢&铝制机械结构步进式正弦信号发生器及闭环控制器静态杨氏模量及泊松比测试选项包含加载机构压缩材料,通过两组多束激光测量侧向变形,分辨率达到10 micron真空测试环境选项真空环境舱及真空泵,环境可达到100 mBASeismic table 桌面,Mechanical stifness:弹性参数测试系统,隔声测试解决方案,非标准产品可根据客户要求提供符合各种标准要求的大、中、小型隔声测试方案,SCS 9022 SAE 阻尼测试方案测试基础钢板 600 x 600m 5mm 厚承载板及弹性支撑装置等IC

39、P型力锤, 0 to 445N, 11.2 mV/N加速度传感器,ICP型,灵敏度7mV/g专业后处理软件,SAE J671 阻尼测试系统,Oberst Bar 阻尼测试系统,SCS 9021 Oberst 测试系统测试专用台架、可调整夹具及机械臂电磁激振器及电源适配器等高温、非接触感应式位移传感器位移传感器信号输入调理,BNC输出参考钢杆300 x10 mm 1mm 厚专业后处理软件,声学包开发CAE仿真,Part 5,2022/12/23,材料预测模型,任意截面形状圆柱孔内空气的有效密度和有效模量其中,材料预测模型-介观力学,刚性框架材料内的声传播从几何框架出发模拟多孔材料的等效密度和模量

40、难度很大,因此多数建模采用了 phenomenological 理论(homogenization theory),其中 Johnson and Champoux and Allard 的工作得到了广泛认可很明显,有效密度和有效模量取决于材料的 5 个几何参数airflow resistivity , open porosity , tortuosity viscous characteristic length , thermal characteristic length ,材料预测模型-均质理论,表面阻抗及传播常数Delany and Bazley 模型适合玻璃棉和较软的岩棉,材料预测模

41、型-半经验公式,针对多孔弹性材料,并假设材料为均质和各向同性,材料预测模型-Biot 原理,Statistical Energy Analysis,Typical applicationsAssemblies doors, cockpits, etc.Systems and sub sub-systemsComplete vehicles interior & exteriorTypical frequency range 500 to 10k HzAdvantagesGeometric detail not criticalAccurate to higher frequenciesSolu

42、tion times relatively short (min.)Moderate computing power needsDisadvantagesRequires structural structural-acoustic expertiseValidation testing can be complicated complicated,Hybrid FEM/SEA Method,Typical applicationsComplete vehicle modelsComponentsTypical frequency range 10 to 10k HzAdvantagesNea

43、rly full frequency rangeDisadvantagesEmerging technology Not much experience yet with this technology,90,Vehicle Airborne exitation,How can we predict diffraction of source around vehicle in order to define exterior SPL for SEA model?,Airborne SEA model,source,Option # 1 : Use test data time consumi

44、ng, non predictiveOption # 2 : Use semi-empirical methods not accurateOption # 3 : Use simulation objective of this study,91, / Subsystem,Pressure distribution at specific frequency,Space/frequency averaged pressure response in 1/3rd octave band,CPU time,Accuracy,FMM solution output,SEA model input,

45、Evaluation of results,Vehicle Airborne excitation,95,FEM+PEM,如何在整车有限元模型中模拟装饰效果(0-400Hz)?,?,方法 # 1 :- 在白车身结构有限元基础上采用等效质量/弹簧模拟装饰,并对有限元声腔进行等效,方法 # 2 :- 采用完全 BIOT方程 描述多孔弹性材料,模拟结构、装饰和流体完全耦合的响应,模型可以正确描述物理现象及响应,PEM 描述内装饰、耦合效果并且计算耦合响应,FEM+PEM,PAM-P AlphaCellis a software based on the Tranfer Matrix Method (

46、TMM/FTMM) It predicts the sound absorption or sound transmission performances of material layers. These layers can describe porous media, solid materials or fluids (air).User can apply simple and advanced models:Delany Bazley(1 parameter),JAC Johnson Champoux Allard(5 parameters),JACL Johnson Champo

47、ux Allard Pride Lafarge (8 parameters),Olny Boutin double prosoity model, micro-perforated facings with circular, rectangular or slit-like perforations,Biot model (isotropic skeleton, 4 parameters) which can be applied to all previous acoustic models to include the elastic effects of the porous fram

48、e. AlphaCell features:an intuitive interface, a database of materials (from experiments or from PAM-RC estimation), a project management for simulations, a customizable PDF report generation of the simulations, a data export/import for comparisons.,PAM-P software:多层声学包设计优化,PAM-P software:多层声学包设计优化,N

49、ormalized Surface Impedance,PAM-P software:多层声学包设计优化,Sound Absorption Coefficient,PAM-P software:多层声学包设计优化,应用开发实例,Part5,20111228,102,后备门对标分析,102,分析模型,SEA分析模型,SEA 模型: 密封条以内范围为计算传递损失的有效面积 一些小孔及加强筋等,认为对传递损失影响很小,可忽略,20111228,103,图中4条曲线的含义:内表面大孔-金属板:标杆车后备门内表面覆盖的内饰材料假定为金属板的材料,即认为是全金属钢板内表面大孔-内饰材料:实际考虑标杆车后备

50、门内表面覆盖的内饰材料内表面大孔-镂空:不考虑标杆车后备门内表面覆盖的内饰材料,即内表面的结构孔洞直接和车腔体连接纯玻璃后备门,后备门对标分析,20111228,104,计算结果的分析计算结果表明传递损失大小为:内表面大孔-金属板内表面大孔-内饰材料内表面大孔-镂空纯玻璃后备门1500Hz以下频率,标杆车后备门传递损失优于新型车后备门传递损失3dB,吻合频率附近(2000Hz),新型车的传递损失性能更差,吻合频率以上性能较为接近考虑工艺的影响,标杆车后备门的实际传递损失应略低于计算结果,后备门对标分析,语音清晰度改进,地毯贡献量最大,其次是顶衬,Baseline,Lear公司改进工艺地毯新材料

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号