数学建模(传染病模型)优质ppt课件.ppt

上传人:牧羊曲112 文档编号:1917905 上传时间:2022-12-26 格式:PPT 页数:13 大小:545KB
返回 下载 相关 举报
数学建模(传染病模型)优质ppt课件.ppt_第1页
第1页 / 共13页
数学建模(传染病模型)优质ppt课件.ppt_第2页
第2页 / 共13页
数学建模(传染病模型)优质ppt课件.ppt_第3页
第3页 / 共13页
数学建模(传染病模型)优质ppt课件.ppt_第4页
第4页 / 共13页
数学建模(传染病模型)优质ppt课件.ppt_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《数学建模(传染病模型)优质ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学建模(传染病模型)优质ppt课件.ppt(13页珍藏版)》请在三一办公上搜索。

1、传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数 (病人) i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病人)和未感染者(健康人),假设,1)总人数N不变,病人和健康 人的 比例分别为,2)每个病人每天有效接触人数为, 且使接触的健康人致病,建模, 日接触率,SI 模型,模型2,tm传染病高潮到来时刻, (日接触率) tm,病人可以治愈!,?,t=tm, di/dt 最大,模型

2、3,传染病无免疫性病人治愈成为健康人,健康人可再次被感染,增加假设,SIS 模型,3)病人每天治愈的比例为, 日治愈率,建模, 日接触率,1/ 感染期, 一个感染期内每个病人的有效接触人数,称为接触数。,模型3,接触数 =1 阈值,感染期内有效接触感染的健康者人数不超过病人数,模型2(SI模型)如何看作模型3(SIS模型)的特例,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率 , 日治愈率, 接触数 = / ,建模,需建立 的两个方程,模型4,SIR模型,模型4,SIR模型,相轨线 的定义域,在D内作相轨线 的图形,进行分析,模型4,SIR模型,相轨线 及其分析,s(t)单调减相轨线的方向,P1: s01/ i(t)先升后降至0,P2: s01/ i(t)单调降至0,1/阈值,模型4,SIR模型,预防传染病蔓延的手段, (日接触率) 卫生水平,(日治愈率) 医疗水平,传染病不蔓延的条件s01/, 的估计,降低 s0,提高 r0,提高阈值 1/,模型4,SIR模型,被传染人数的估计,记被传染人数比例, 小, s0 1,提高阈值1/降低被传染人数比例 x,s0 - 1/ = ,畅想网络,Imagination Network,感谢观看!,文章内容来源于网络,如有侵权请联系我们删除。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号