小学数学课程标准培训(用)课件.ppt

上传人:牧羊曲112 文档编号:1932234 上传时间:2022-12-26 格式:PPT 页数:194 大小:838.50KB
返回 下载 相关 举报
小学数学课程标准培训(用)课件.ppt_第1页
第1页 / 共194页
小学数学课程标准培训(用)课件.ppt_第2页
第2页 / 共194页
小学数学课程标准培训(用)课件.ppt_第3页
第3页 / 共194页
小学数学课程标准培训(用)课件.ppt_第4页
第4页 / 共194页
小学数学课程标准培训(用)课件.ppt_第5页
第5页 / 共194页
点击查看更多>>
资源描述

《小学数学课程标准培训(用)课件.ppt》由会员分享,可在线阅读,更多相关《小学数学课程标准培训(用)课件.ppt(194页珍藏版)》请在三一办公上搜索。

1、研读2011版小学数学课程标准小学数学新课程标准培训材料苍溪县陵江教育督导站 余 平苍溪县五龙镇中心小学 雷顺华,课程标准是所有学生能够达到的基本要求,而不是最高要求。,第一线的教师不仅是新课程的实施者,也是新课程的设计者、制定者和开发者。,一. 数学课程标准修订的依据与原则,依据: 数学课程标准修订以国家中长期教育改革和发展规划纲要(2010-2020)为指导,遵循基础教育课程改革纲要确定的基础教育课程改革的基本理念,总结新一轮课程改革实施10年来的经验,使数学课程更加完善,适应社会发展与教育改革的需要。,原则:坚持体现国家利益,坚持基础教育课程改革的大方向,以课程改革的实践和调查研究的结果

2、为基础,针对实施过程中出现的问题和各方面提出的建议进行修订,力求标准更加完善:使标准表述更加准确、规范、明了、全面;使标准结构更加合理、思路更加清晰;进一步增加标准的可操作性,更适合教材编写、教师教学和学习评价。,此次课标修订最关注的是什么?,此次课标修订特别关注三个方面要求: 时代发展的要求 数学学科的要求 课堂教学的要求,新课程标准注意体现时代发展 对数学课程的如下要求:,课程改革的核心是人才培养模式变化要加强对学生创新精神和实践能力的培养要以课程为载体实实在在推进素质教育要体现教育的均衡、公平,要为所有学生提供良好的教育要体现义务教育课程的基本特性:普及性、基础性、发展性,用科学、辩证的

3、态度处理好数学课程及教学中的一些基本关系重视过程和关注结果教师讲授和学生自主学习生活情境化和知识系统性面向全体与因材施教此外,还有直观形象与抽象思维、合情推理与演绎推理等的关系。,教学大纲到课程标准的转变体现在:教育理念由“知识为本”转为“育人为本”课程目标由“双基”变“四基”,由“二能”变“四能” 内容方法由“结果性”转为“结果性”加“过程性” 评价指标由“单一”转为“多元”,二.修订的主要方面,数学课标修订的主要方面:,1.关于课程性质和基本理念(课标第1、2页)2.关于课程设计思路(课标3-7页)3.关于课程目标(课标8-15页)4.关于课程内容(课标16-41页)5.关于课程实施 (课

4、标42-71页) 与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:,各领域的具体变化见培训资料。,三. 数学与数学课程,关于数学观 如何认识数学,原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。新课标:数学是研究数量关系和空间形式的科学。,数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是

5、20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。,关于基本理念的修改(一)(在前言中增加了课程性质的描述、修改、丰富了基本理念的一些提法),前言增加了对数学课程性质的表述,数学课程的性质表述为,“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基

6、本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。,关于基本理念的修改(二),原课标: 数学课程 数学 数学学习 数学教学 评价 信息技术修改后: 数学课程 课程内容 教学活动 学习评价 信息技术,课程基本理念(新课标) (数学课程) 1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。,基本理念“三句”变“两句” 原课标的“三句话”: 人人学有价值的数学 人人都能获得必需

7、的数学 不同的人在数学上得到不同的发展新课标的“两句话”: 人人都能获得良好的数学教育 不同的人在数学上得到不同的发展(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育),何谓“良好的数学教育”?,良好的数学教育对于学生来说是适宜的、满足发展需求的教育良好的数学教育是全面实现育人目标的教育良好的数学教育是促进公平、注重质量的教育良好的数学教育是使学生能可持续发展的教育,良好的数学教育需要在各个维度上体现,需要我们重新审视数学课程的目标、内容,也需要我们在课堂教学实施中寻找切入点!,“不同的人在数学上 得

8、到不同的发展”,体现了数学教育中对人的主体性地位的回归与尊重需要正视学生的差异,尊重学生的个性,促成发展的多样性 “不同的人在数学上得到不同的发展”本质上应促进学生更好地自主发展,2(课程内容)课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。,课程内容要处理好三个关系:,课程内容的组

9、织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。,课程内容观,3(教学活动)教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。 数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。 学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索与合作交流等,都是学习数学的重要方式。学生应当

10、有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。 教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,数学思想和方法,获得基本的数学活动经验。,我们需要什么 样的数学教学?,教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。 数学教学活动的本质是什么?,树立正确的数学教学观,什么是数学课堂教 学中最需要做的事?,数学教学活

11、动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。 改变人才培养模式 要从这些方面入手!,原课标:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”,新课标:学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。,原课标:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们

12、在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,新课标:教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。,原课标:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”,新课标:(学习评价)学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和

13、改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。,树立正确的评价观,评价目标的多元,不仅指向基础知识和知识技能,还应该重视学生的学习过程、重视学生的情感态度、重视学生思维能力和数学思考等方面的评价,评价还应该指向多元的课程目标,所以评价的目标应该是多元的。评价方法的多样,不仅是充分地利用纸笔测验(考试当然要保留,但要改进)、口头测验、开放式问题、活动报告、课堂观察、课后访谈、课内外作业、在条件允许的地方,也可以采用网上交流的方式进行评价。同时

14、,用多元的评价方法,还应包括过程性评价、智力评价、成长记录袋、学生的活动过程的记录等都应该作为一种评价的方法。评价主体的多元化是指教师、家长、同学及学生本人都可以作为评价者,可以综合运用教师评价、学生自我评价、学生相互评价、家长评价等方式,对学生的学习情况和教师的教学情况进行全面的考查。,所以,在学习过程中,不仅是对学生学习成绩的评价,也包括对学生学习过程的评价,对学生学习态度的评价。 学习评价,还要看教师根据学生的表现,折射出教学过程是否需要改进,因而,评价不仅是对学生,也是对教师,特别是对教师改进教学起了重要的作用,所以应当特别重视这种评价的目标和功能。 评价应该指向多元的课程目标,所以评

15、价目标是多元的,方法也应该是多样的。,如何看待信息技术的运用?,(信息技术)信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式 ,使学生乐意并有可能投入到现实的、探索性的数学活动中去。,重视信息技术对数学教育的影响。信息技术不仅在教学中,而且在评价中,在学生的交流中,在师生互动中,都可能发挥作用。把现代信息技术作为学生学习数

16、学和解决问题的有力工具,一是计算机辅助教学(PPT),二是搜集、整理、运用信息的工具,三是交流的工具。,四. 课程目标,总目标:通过义务教育阶段的数学学习,学生能: 1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。 2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。 3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。,变化之一:明确提出四基,即“基础知识、基本技能、基本活动经验、基本思想”(四基)变

17、化之二:明确提出“发现问题和提出问题的能力、分析问题和解决问题的能力”(四能)变化之三:加强数学联系,提出“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”(三联系)变化之四:对于情感态度的培养,进一步明确“了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯”变化之五:针对学科精神的培养,明确提出“具有初步的创新意识和科学态度”,数学课程总目标有那些新变化?,1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。,如何认识“四基”,双基”变“四基” (解读10、43-47 页) “双基”:基础知识、基本技能;“四基”:基

18、础知识、基本技能、基本思想、基本活动经验“四基”与数学素养: 掌握数学基础知识 训练数学基本技能 领悟数学基本思想 积累数学基本活动经验,1. “双基”为何要发展为“四基” 2. 获得基本的数学思想 3. 获得基本的活动经验 4.“四基”是一个有机的整体,1. “双基”为何要发展为“四基”? 体现数学教育三维目标:知识与技能;过程与方法;情感、态度与价值观 。 符合素质教育的理念,有利于培养创新型人才。,2. 获得基本的数学思想 数学思想是数学科学发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓,内涵十分丰富。,不懂得数学思想方法的数学教师不是一个称职的教师。 徐利治,数学

19、思想是对数学知识的本质的认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学认识过程中提炼上升的数学观点,它在认识活动中被反复运用带有普遍的指导意义是建立数学和用数学解决问题的指导思想。 钱佩玲主编中学数学思想方法,标准中“数学的基本思想”主要有:(解读44页)数学抽象的思想;数学推理的思想;数学建模的思想。,人类通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过数学推理,进一步得到大量结论,数学科学得以发展;通过数学建模,把数学应用到客观世界中,产生了巨大的效益,又反过来促进数学科学的发展。,数学抽象的思想派生出的有: 分类的思想;集合的思想;数形结合的思想;变中有

20、不变的思想;符号表示的思想;对称的思想;对应的思想;有限与无限的思想等。,数学推理的思想派生出的有: 归纳的思想;演绎的思想;公理化思想;转换与化归的思想;联想与类比的思想;逐步逼近的思想;代换的思想;特殊与一般的思想等。,数学建模的思想派生出的有: 简化的思想;量化的思想;函数的思想;方程的思想;优化的思想;随机的思想;抽样统计的思想等。,数学方法:数学方法不同于数学思想。在用数学思想解决具体问题时,会形成程序化的操作,就构成数学方法。 数学方法具有层次性,较高层次的有:演绎推理的方法,合情推理的方法,变量替换的方法等价变形的方法,分类讨论的方法等。较低层次的有分析法,综合法,穷举法,反证法

21、,构造法待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,配方法,列表法,图象法等。,3. 获得基本的活动经验 “活动经验”与“活动”密不可分,要有“动”手动、口动和脑动。既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的活动,也包括课程教学中特意设计的活动。,“活动经验”与“经验”密不可分。学生要把活动中的经历、体会总结上升为“经验”。既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中逐渐积累得到的经验。这些经验必须

22、实现内化,才可以认为学生获得了“活动经验”。,数学基本活动经验是学生从数学的角度进行思考,通过亲身经历数学活动过程所获得的具有个性特征的经验。应具有主体性、实践性、发展性、多样性等特征。,学生只有积极参与数学课程的教学过程,经过独立思考,探索实践,合作交流等,才有可能积累数学活动经验。 标准中设置 “综合与实践”的课程内容,强调以问题为载体,让学生在解决问题的实践中获得数学活动经验。,4. “四基”是一个有机的整体 “四基”不是简单的叠加与混合,而是相互联系、相互交融,相互促进的整体。基础知识和基本技能是数学教学的主要载体;数学思想则是数学教学的精髓,是课堂教学的主线;数学思想的教学要以数学知

23、识为载体,因势利导,画龙点睛,避免生硬牵强和长篇大论。数学活动是不可或缺的教学形式与过程。,2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。,如何增强能力,“二能”变“四能” (解读11、48-51页)“二能”:分析问题、解决问题的能力;“四能”:发现问题、提出问题的能力、分析问题、解决问题的能力,1. 体会数学的联系 2. 运用数学的思维方式进行思考 3. 增强发现和提出问题的能力、分析和解决问题的能力,1. 体会数学的联系(三联系) 数学知识之间的联系; 数学与其他学科之间的联系; 数学与生活之间

24、的联系。,对数学知识的考查,既要全面又突出重点。注重学科的内在联系和知识的综合性,从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点设计试题,使对数学知识的考查达到必要的深度.,2. 运用数学的思维方式进行思考 学会思考的重要性不亚于学会知识,它将使学生终身受益。运用数学的思维方式进行思考,也称为数学的理性思维。包括形象思维、逻辑思维和辩证思维,合情推理和演绎推理等等。 义务教育阶段数学课程进行的全过程,都应注意培养学生的数学思维和数学推理。其中的第一学段和第二学段,学生较多接触和学习的是合情推理,第三学段则必须加强演绎推理的教学。,合情推理包括分类、归纳、类比、联想、猜测等,它们常

25、常是得到新结论的方法和途径,合情推理对于探索规律和发现结论不可或缺。但是,合情推理的结论可能是正确的,也可能是错误的,还需要依靠演绎推理去证明或者证否。对此,在第一学段和第二学段,可以逐渐渗透给学生知道,在第三学段则应该明确地告诉学生,让学生对此有清醒的认识。,演绎推理的基本程序是“三段论”式的逻辑推理,要让学生逐步深入地体会到,所有数学结论都是需要经过证明的。演绎推理的高级形式是形成公理化体系,义务教育阶段不必“公理化”,可以在潜移默化中使学生体会这样一种思维方式。,3. 增强发现和提出问题的能力、分析和解决问题的能力 “发现问题”,是经过多方面、多角度的数学思维,从表面上看来没有关系的一些

26、现象中找到数量关系或者空间形式的某些联系,或者找到数量关系或者空间形式的某些矛盾,并把这些联系或者矛盾提炼出来。“提出问题”,是在已经发现问题的基础上,把找到的联系或者矛盾用数学语言、数学符号集中地以问题的形态表述出来。,此次修订增加的“发现问题和提出问题的能力”,是从培养学生的创新意识和创新能力考虑的,是对创新性人才的基本要求。 为此,在数学教学中教师就要努力创设适当的情境,让学生用数学的眼光来看待和分析这些情境,采用探究式的教学方法,引导学生发现问题和提出问题。,3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。,培养科学态度,

27、1. 了解数学的价值,提高学习兴趣 2. 养成良好的学习习惯和科学态度,1. 了解数学的价值,提高学习兴趣 数学价值体现在数学的应用:日常生活、工程技术以及其他学科。 数学价值体现在教育上:学生在数学学习中学到了从数学角度看问题,学到了理性思维,思考更有条理,表达更加清晰。数学在培养学生的抽象能力、推理能力和创新能力上,发挥着独特的不可替代的作用。,教师要让学生了解数学的价值,讲究教学方法。恰当的引题和启发式教学,带领学生解决某些带有挑战性的问题,让学生看到数学内在的本质和自身的魅力,都能够激发学生学习数学的兴趣。特别要注意用数学内在的本质,如简洁、明确、强烈的规律性和对客观事物的准确刻画,去

28、引发学生的兴趣,不能以不适当地降低难度来保护学生的学习兴趣。,要尊重和爱护学生,教学中要注意调动学生的积极因素和发现学生的正确成分,多采用正面表扬和鼓励,少采用批评,绝不能有任何挖苦。批评要具体,要分寸得当,要体现出善意。对于学得较差的学生,教师要及早发现并给予适当的个别辅导,要更多地与他们接触,多设计一些启发的层次,让他们真正学懂学会,迅速赶上来。,2. 养成良好的学习习惯和科学态度 良好的学习习惯可以概括为:认真勤奋,独立思考,合作交流,反思质疑。 良好的科学态度有许多内涵,例如坚持真理,修正错误,严谨周密,实事求是等。实事求是是科学态度的核心。,总目标从以下四个方面具体阐述 (课标8、9

29、页) 1.知识技能 2.数学思考 3.问题解决 4.情感态度,总目标四个方面的关系:总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。,学段目标(学段目标较以前在表述方式上有所改变)第一学段(13年级)(课标10、11页)第二学段(46年级)(课标10-13页),吴正宪老师送给老师四句话1在育人的过程中没有什么比保护

30、学生的自尊心、自信心更重要。 2在学习的过程中没有什么比激发学习兴趣、保护好奇心更重要。 3在交往的过程中没有什么比尊重个性、真诚交流更重要。 4在成长的过程中没有什么比养成良好的习惯更重要.,五.课程设计思路, 学段划分保持不变; 对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词; 对四个学习领域的名称作适当调整; 对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释。,设计的原则、思路: 义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现

31、作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。按以上思路具体设计如下。,(一) 学段划分为了体现义务教育数学课程的整体性,统筹考虑九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(13年级)、第二学段(46年级)、第三学段(79年级)。,(二) 课程目标 义务教育阶段数学课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。数学课程目标包括结果目标和过程目标。结果目标使用“了解、理解、掌握、运用”等术语表述,过程目标使用“经历、体验

32、、探索”等术语表述(术语解释见附录1,课标72页)。(基本目标:基础知识、基本技能、基本思想、基本活动经验),(三) 课程内容在各学段中,安排了四个部分(四个学习领域)的课程内容:“数与代数”“图形与几何”“统计与概率”“综合与实践”。 “综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。,四个领域名称的变化: 原课标:数与代数 、空间与图形、统计与概率、实践与综合应用新课标:数与代数、图形与几何、统计与概率、综合与实践,“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的

33、运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。,“图形与几何”的主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。在“图形与几何”的学习中,应帮助学生建立空间观念。直观与推理是“图形与几何”学习中的两个重要方面。,“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、记录调查数据、描绘统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简

34、单的判断。简单随机事件及其发生的概率。在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。,“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。 这种类型的课程对于培养学生的抽象能力和逻辑思维能力,对于培养学生的创新意识和应用能力是有益处的,还有利于培养学生的合作精神。合理地设计课程内容以及教学方法是达到教学目标的关键,既要考虑学生的直接经验,能够启发学生思考,也要考虑问题的数学实质,培养学生的数学

35、素养。这种类型的课程对教师是一种挑战,教师应努力把握住问题的本质,能够引导学生思考,同时,教师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。这种类型的课程应当贯彻“少而精”的原则,保证每学期至少一次。,十个核心概念 :在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。(课标5-7页,解读15-22页),关于10个核心概念的分析 原课标也称为“关键词”,原课标:数感 符号感 空间观念 (6个) 统计观念 应用意

36、识 推理能力新课标:数感 符号意识 运算能力 (10个) 模型思想 空间观念 几何直观 推理能力 数据分析观念 应用意识 创新意识,提出核心概念的意义,核心概念蕴涵于具体的课程内容之中。核心概念是一类课程内容的核心或主线,它有利于我们体会内容的本质,把握课程内容的线索,抓住教学中的关键。,核心概念是数学课程的目标,也是数学课堂教学的目标,如“数学思考”和“问题解决”部分(课标9页)的目标提出:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力”;“发展数据分析观念,感受随机现象”;“发展合情推理和演绎推理能力”;“增强应用意识,提高实践能力”;“体验解决问题方法的多样性,发展创新意识”

37、。 涵盖了所有的核心概念。,核心概念都体现着数学的基本思想 。 核心概念是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。,核心概念凸显数学学科的特征核心概念涵盖数学素养的内容核心概念体现数学思想的要素核心概念细化数学课程的目标,把握好这些核心概念无论对于教师教学和学生学习都是极为重要的。,核心概念之一:数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。,将数感表述为“感悟”,原来,对数感内涵的认识较多强调其直觉、感知、潜意识、经验等方面,在教学中常常感到“虚” ,找不到教学支点。

38、将数感表述为“感悟”不仅使这一概念有了较为明晰的界定,也使得这一概念有了更实在的意义,有利于一线教师的理解和把握。它揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。感悟是既通过肢体又通过大脑,因此,既有感知的成分又有思维的成分。,标准将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计,这主要是基于义务教育阶段数学课程内容的范围并根据学生的实际所作出的要求,这有利于教师在教学中更好地把握数感培养的几条主线。,核心概念之二:符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学

39、生理解符号的使用是数学表达和进行数学思考的重要形式。,标准对符号意识的表述有这样几层意思值得我们体会:其一,能够理解并且运用符号表示数、数量关系和变化规律。即对数学符号不仅要“懂”,还要会“用”,其二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识。这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等。,其三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。这又引出了两个除符号理解和操作之外的要求,即符号的表达与思考。概括起来,符号意识的要求就具体体现于符号理解、符号操作、符号表达、符号

40、思考四个维度。,核心概念之三:空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。,空间观念标准从四个方面提出了要求:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。 空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,几乎很难谈发明与创造。,核心概念之四:几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预

41、测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。,它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的“图形表示”和“图形分析”。,前者指教学中要培养学生通过画图来表达数学问题的习惯,能画图时尽量画;后者指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求解决问题的思路。,几何直观的培养 使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、

42、证明等数学的过程变得直观,核心概念之五:数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律,数据分析是统计的核心。,数据分析观念 由统计观念改为数据分析观念,原课标中的“统计观念”,强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等要求。此次将其改为“数据分析观念”,就是希望改变过去这一概念含义较“泛”,体现统计与

43、概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。,数据分析观念的含义 数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。,一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性,数据分析观念的要求:,核心概念之六: 运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解

44、运算的算理,寻求合理简洁的运算途径解决问题。,运算能力 此次增加的核心概念,运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能,并发展运算能力。,标准对运算能力的要求,标准指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。,对运算能力的认识,运算的正确、有据、合理、简洁是运算能力的主要特征。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,

45、要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。,会根据法则、公式进行正确的运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算. 运算求解能力是思维能力和运算技能的结合。运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力. (高考考试大纲),核心概念之七:推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活

46、中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。,推理能力,此次标准提出的推理能力与过去相比,有这样一些特点:一是进一步指明了推理在数学学习中的重要意义。标准指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。它对教学的启示是,不仅要引导学生认识到推理是数学的重要基

47、础之一,它与人们的生活息息相关,更重要的是要逐步培养学生运用推理进行思维的方式。,突出了合情推理与演绎推理,二是基于数学推理的特点,突出了合情推理与演绎推理这条主线。指出在数学思维和问题解决的过程中,两种推理功能不同,相辅相成合情推理用于探索思路,发现结论;演绎推理用于证明结论。,强调推理能力的培养“应贯穿于整个数学学习过程中”。,其一,它应贯穿于整个数学课程的各个学习内容,其二,它应贯穿于数学课堂教学的各种活动过程其三,它应贯穿于整个数学学习的环节也应贯穿于三个学段,合理安排,循序渐进,协调发展,通过多样化的活动,培养学生的推理能力,标准强调通过多样化的活动来培养学生的推理能力。如标准提出:

48、“在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力 ”(总目标),“体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多样化形式的数学活动中,发展合情推理与演绎推理的能力”(三学段),核心概念之八:模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。,使学生体会和理解数学与外部世界的联系是这一核心概念的本质要求,标准

49、从义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:,首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。,在义务教育阶段提出模型思想主要有如下理由 第一,模型思想是一种基本的数学思想; 第二,模型思想及相应的建模活动与很多课程 目标点密切相关(如数感、符号意识、 几何直观、发现、

50、提出问题能力、数学 的联系、数学应用意识、改善数学学习 方式等等),提出模型思想能很好地支 撑这些课程目标的实现;,第三,模型思想本身就渗透于各课程内容领域之中,突出模型思想有利于更好理解、掌握所学内容;第四,培养学生的模型思想对义务教育阶段学生来说是可行的。此外还要看到,数学建模已是高中数学课程的学习内容,提出模型思想亦能更好与高中课程衔接。,对数学建模的认识,所谓数学模型,就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系所形成的 一种数学结构。在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号