随机变量优选ppt课件.ppt

上传人:牧羊曲112 文档编号:1935001 上传时间:2022-12-27 格式:PPT 页数:27 大小:800KB
返回 下载 相关 举报
随机变量优选ppt课件.ppt_第1页
第1页 / 共27页
随机变量优选ppt课件.ppt_第2页
第2页 / 共27页
随机变量优选ppt课件.ppt_第3页
第3页 / 共27页
随机变量优选ppt课件.ppt_第4页
第4页 / 共27页
随机变量优选ppt课件.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《随机变量优选ppt课件.ppt》由会员分享,可在线阅读,更多相关《随机变量优选ppt课件.ppt(27页珍藏版)》请在三一办公上搜索。

1、2020/10/18,1,第一章 概率与统计,2020/10/18,2,1.1随机变量及其分布列(一),06.07.04,2020/10/18,3,复习回顾:,1、什么是随机事件?什么是基本事件?,2、什么是一次试验?,2020/10/18,4,一个试验满足下述条件称为随机实验:,(1)试验可以在相同的情形下重复进行。,(2)试验的所有可能结果是明确可知道的,并且不止一个。,(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果。,随机实验,2020/10/18,5,(1)、京广T15特快列车到达广州站是否正点。,(2)、1976年唐山大地震。,解:是随机

2、试验。因为它满足随机试验的三个条件:即在相同的情况下可重复进行(每天一次);所有可能的结果是明确的(正点或误点);试验之前不能肯定会出现哪种结果。,解:不是随机试验,因为它不可重复进行。,例1:判断下面问题是否构成随机试验,2020/10/18,6,(3)某人在射击训练中,射击一次;,(4)某纺织公司的某次产品检验,在可能含有次品的100件产品中任意抽取4件。,2020/10/18,7,问题1:某人在射击训练中,射击一次,可能出现命中的环数情况有哪些?,问题2:某纺织公司的某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品件数可能是哪几种结果?,若用表示所含次品数,有

3、哪些取值?,若用表示命中的环数,有哪些取值?,2020/10/18,8,随机变量,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。,随机变量常用希腊字母、表示。,随机变量或的特点:,(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值。,2020/10/18,9,思考:随机试验“京广T15特快列车到达广州站是否正点”的结果是否可以用一个变量来表示?,随机变量,即是随机试验的试验结果和实数之间的一个对应关系.,2020/10/18,10,(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数;,例2、写出下列各随机

4、变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果;,(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数;,(3)抛掷两个骰子,所得点数之和是;,(4)连续不断地射击,首次命中目标需要的射击次数,即P5练习T1,2020/10/18,11,(5)某单位的某部电话在单位时间内收到的呼叫次数,(6)某林场树木最高达30m,此林场某一棵树的高度.,2020/10/18,12,(1)离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。,(2)连续型随机变量:随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量

5、。,离散型随机变量,2020/10/18,13,1、将一颗均匀骰子掷两次,不能作为随机变量的是( ),实战演练,A、两次出现的点数之和,B、两次掷出的最大点数,C、第一次减去第二次的点数差,D、抛掷的次数,D、抛掷的次数,2020/10/18,14,2、某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要买50只,但不得超过80只。商厦有优惠规定:一次购买小于或等于50只的不优惠。大于50只的,超出的部分按原价格的7折优惠。已知水杯原来的价格是每只6元。这个人一次购买水杯的只数是一个随机变量,那么他所付款是否也为一个随机变量呢? 、有什么关系呢?,若是随机变量,则=a+b(其中a、b是常数)

6、也是随机变量 ,2020/10/18,15,3、某座大桥一天经过的车辆数为;某无线寻呼台一天内收到寻呼的次数为;一天之内的温度为;一射手对目标射击,击中目标得1分,未击中目标得0分,用表示该射手在一次射击中的得分。以上问题中的是离散型随机变量的是( ),A、B、C、D、,B、,2020/10/18,16,5、抛掷一个骰子,设得到的点数为,写出所能取的值,说出其所表示的含义,并求出取每个值时所表示事件的概率。,4、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为,试问(1)“4”表示的试验结果是什么?(2) P (4)=?,2020/10/18,17,抛掷一枚骰子,设得到的

7、点数为,则可能取的值有:1,2,3,4,5,6.由概率知识可知,取各值的概率都等于,此表从概率的角度指出了随机变量在随机试验中取值的分布情况,称为随机变量的概率分布.,2020/10/18,18,离散型随机变量的分布列,一般地,设离散型随机变量可能取的值为x1,x2,xi,取每一个值xi(i=1,2,)的概率P(= xi)=pi,则称表,为随机变量的概率分布,简称为的分布列,2020/10/18,19,实战演练,6、一盒中放有大小相同的4个红球、1个绿球、2个黄球,现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数的分布列。,2020/

8、10/18,20,实战演练,7、某一射手射击所得的环数的分布列如下:,求此射手“射击一次命中环数7”的概率,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。,2020/10/18,21,离散型随机变量的分布列的性质,2020/10/18,22,实战演练,8、随机变量的分布列为,(1)求常数a。(2)求P(14),2020/10/18,23,、 若是随机变量,则=a+b(其中a、b是常数)也是随机变量 ,、随机变量分为离散型随机变量和连续型随机变量。,、某些随机试验的结果不具备数量性质,但仍可以用数量来表示它。,课堂小结,1、随机变量将随机事件的结果数量化,随机变量的取值

9、对应于随机试验的某一随机事件。,2020/10/18,24,5、所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的这与函数概念的本质是一样的,只不过在函数概念中,函数f(x)的自变量x是实数,而在随机变量的概念中,随机变量的自变量是试验结果。,2020/10/18,25,6、离散型随机变量的分布列,一般地,设离散型随机变量可能取的值为x1,x2,xi,取每一个值xi(i=1,2,)的概率P(= xi)=pi,则称表,为随机变量的概率分布,简称为的分布列,2020/10/18,26,7、离散型随机变量的分布列的性质,谢谢您的聆听与观看,THANK YOU FOR YOUR GUIDANCE.,感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!,汇报人:XXX,日期:20XX年XX月XX日,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号