机械加工车间低压配电系统及车间变电所设计.docx

上传人:牧羊曲112 文档编号:1945543 上传时间:2022-12-27 格式:DOCX 页数:59 大小:1.05MB
返回 下载 相关 举报
机械加工车间低压配电系统及车间变电所设计.docx_第1页
第1页 / 共59页
机械加工车间低压配电系统及车间变电所设计.docx_第2页
第2页 / 共59页
机械加工车间低压配电系统及车间变电所设计.docx_第3页
第3页 / 共59页
机械加工车间低压配电系统及车间变电所设计.docx_第4页
第4页 / 共59页
机械加工车间低压配电系统及车间变电所设计.docx_第5页
第5页 / 共59页
点击查看更多>>
资源描述

《机械加工车间低压配电系统及车间变电所设计.docx》由会员分享,可在线阅读,更多相关《机械加工车间低压配电系统及车间变电所设计.docx(59页珍藏版)》请在三一办公上搜索。

1、 本科毕业设计(论文)题目:机械加工车间低压配电系统及车间变电所设计学生姓名学号教学院系专业年级指导教师职称单位辅导教师职 称单位完成日期2011年06月9日摘 要本设计是机械厂机加工车间的低压配电系统及车间变电所供电系统。本文首先进行了负荷计算,根据功率因数的要求在低压母线侧进行无功补偿,进而确定对主变器容量、台数,从经济和可靠性出发确定主接线方案。其次,通过短路电流计算出最大运行方式和最小运行方式下的短路电流,确定导线型号及各种电气设备。最后根据本厂对继电保护要求,确定相关的保护方案和二次回路方案。本设计采用需用系数法进行负荷计算,无功功率补偿采用低压侧电容并联补偿方法,这种方法能补偿低压

2、侧以前的无功功率、经济效益比较好。根据机械加工车间用电特点和需求,主接线方案采用了高压侧无母线、低压侧单母线分段的主接线方案。根据干式变压器与油浸变压器在经济和安装条件对比,选择两台SC9-500/10系列干式变压器。在仔细研究各负荷的实际数据,并严格按照国家规定,依照以上设计步骤设计本供电系统设计方案,以到达提高生产效益的目的。关键词:低压配电系统;负荷计算;主接线;变电所;短路计算 Abstract This design is the factory machining workshop of low voltage distribution system and workshop su

3、bstation power supply system. This paper conducted a load calculation, according to the requirements of power factor in the low-pressure side of the bus reactive power compensation, and to determine the capacity of the transformer device, the number of units, starting from the economic and reliabili

4、ty to determine the main terminal program.Secondly, calculate the maximum short circuit current operation mode and minimum operating mode of the short circuit current to determine the wire type and variety of electrical equipment.Finally, according to the factory on protection requirements, identify

5、 relevant programs and secondary circuit protection program. This design uses the need coefficient method for the load calculation, reactive power compensation capacitor in parallel with low-pressure side of the compensation method, this method can compensate for low-voltage side of the previous rea

6、ctive power, economic efficiency is better. According to machine shop characteristics and needs of electricity, the main connection schemes using non-bus high side, low side of the single-bus section of the Main Wiring.According to dry-type transformers and oil immersed transformers and installation

7、 conditions in the economy compared to select two SC9-500/10 series of dry-type transformers. Only then carefully studies the factory the actual data, strictly stipulated according to the country, and only then may design an economy reliable power supply system through the above design procedure, th

8、us arrives the enhancement production benefit the goal. Keywords: Low Voltage Distribution System; Load Calculation; Main Connection; Substation; Short circuit calculation目 录1 绪论11.1 设计背景、目的及意义11.2 设计内容11.3 设计原则12 负荷计算及无功补偿22.1 负荷计算22.1.1 负荷计算的方法及其适用范围22.1.2 需用系数法22.1.3 负荷确定42.2 无功功率补偿52.2.1 无功功率补偿概

9、念52.2.2 无功补偿提高功率因数的意义52.3 无功补偿容量计算62.3.1 无功功率补偿方式选择62.3.2 无功补偿容量的确定82.3.3 补偿容量计算93 变电所主接线方案设计及变压器选择103.1 变电所主变压器台数与容量选择103.1.1 选择主变压器台数时应考虑下列原则103.1.2 主变压器的确定113.2 总配变电所的主接线方案比较选择124 短路电流的计算及一次设备的选择原则144.1 短路计算144.1.1 短路电流计算目的144.1.2 采用三相短路电流计算为标准的原因144.1.3 短路电流计算的方法步骤144.1.4 短路电流计算154.2 一次设备选择164.2

10、.1 概述164.2.2 一次设备的选择原则164.2.3 按短路情况校验电器的稳定性164.2.4 一次设备选择与校验185 车间变电所高低压进出线选择225.1 高压进线选择225.2 低压出线选择236 车间配电线路设计256.1 车间配电线路结线方案256.2 动力配电箱的选择256.3 刀开关的选择266.4 配电线路敷设方式267 二次回路方案的选择及继电保护整定267.1 概述267.2 继电保护277.2.1 继电保护的要求277.2.2 过电流保护277.2.3 电流速断保护287.3 变压器保护287.3.1 概述287.3.2 车间变电所的各分厂变压器保护287.3.3

11、降压变电所变压器保护297.4 继电保护的选择与整定297.4.1 继电保护的种类297.4.2 反时限过电流保护298 防雷与接地328.1 概 述328.2 防雷与接地328.2.1 防雷装置328.2.2 架空线路的防雷保护328.2.3 车间变电所的防雷保护和接地装置的设计338.2.4 电力系统的接地338.2.5 配电所公共接地装置的设计349 车间照明设计359.1 光源分类359.2 车间及各变电所光源的合理选择3510 结论39谢辞40参考文献41附录一 一车间负荷详细计算42附录二 短路电流计算46附录三 机加工一车间各配电线路的详细选择过程49附录四 主接线52附录五 一

12、车间低压配电系统图52附录六 一车间电气设备配电布置图52附录七 一车间照明配电图52附录八 变电所平面图、剖面图52机械加工车间低压配电系统及车间变电所设计1 绪论1.1 设计背景、目的及意义在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果

13、。因此,如何正确地计算选择各级变电站的变压器容量及其它主要电气设备,这是保证企业安全可靠供电的重要前提。做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作。根据该工厂的规模、负荷情况、供电条件、技术要求、自然条件,设计其总配变电所及配电系统。1.2 设计内容 根据任务书的要求,本设计主要有以下内容:(1) 车间的负荷计算及无功功率补偿;(2) 总配电所位置和型式的选择;(3) 变电所主变压器台数和容量、

14、类型的选择;(4) 变电所主结线方案的设计;(5) 短路电流的计算,并进行一次设备的选择与校验;(6) 选择车间变电所高低压进出线;(7) 选择电源进线的二次回路方案及整定继电保护;(8) 车间防雷保护和接地装置的设计;(9) 确定车间低压配电系统布线方案;(10)选择低压配电系统导线及控制保护设备。1.3 设计原则按照国家标准工业与民用供配电系统设计规范、10KV及以下变电所设计规范及低压配电设计规范等的规定,进行工厂供电设计必须遵循以下原则:(1) 必须遵循有关国家标准,认真执行国家的技术经济政策,并应作到保障人身和设备安全,供电可靠,电能质量合格,技术先进和合理。(2) 应根据工程特点、

15、规模和发展规划,正确处理近期和远期发展的关系,作到远、近期结合,以近期为主,适当考虑扩建的可能。(3) 必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案,满足供电要求。(4) 应注意执行节约能源、节约有色金属和“以铝代铜”等技术政策。2 负荷计算及无功补偿2.1 负荷计算2.1.1 负荷计算的方法及其适用范围电力负荷计算方法包括:利用系数法、需要系数法、二项式系数法。我国一般使用需要系数法和二项式系数法,如表2.1负荷计算方法及适用范围。表 2.1 负荷计算的方法及其适用范围序号计算方法适用范围需求系数法当用电设备台数较多、各台设备容量相差不太悬殊时,

16、特别在确定车间和工厂的计算负荷时,宜于采用二项式法当用电设备台数较少、有的设备相差悬殊时,特别在确定干线和分支线的计算负荷时,宜于采用所以本设计中用需要系数法计算机加工车间的负荷。2.1.2 需用系数法用电设备组的计算负荷,是指用电设备级从供电系统中取用的半小时最大负荷,设用电设备组的设备容量为,它指用电设备组所有设备(不含备用设备)的额定容量之和。由于用电设备组的设备实际上不一定都同时运行,运行的设备也不可能都同时满负荷,同时设备本身存在有功率损耗,因此,用电设备组的有功计算负荷应为:其中,为设备组的同时系数,即设备组在最大负荷时运行的设备容量与全部设备容量之比;为设备的负荷系数,即设备组在

17、最大负荷时的输出功率与运行的设备容量之比:为设备组的平均效率,即设备组在最大负荷时的输出功率与取用功率之比;为配电线的平均效率,即配电线路在最大负荷时的末端功率与首端功率之比。令,称为需要系数(1)单组设备计算负荷 当分组后同一组中设备台数3台时,计算负荷应考虑其需要系数,即: 式中 总设备功率,单位kW Kd 需用系数 计算有功功率,单位为kW 计算无功功率,单位kvar 计算视在功率,单位kVA 功率因数角的正切值 电气设备额定电压,单位kV 计算电流,单位A当每组电气设备台数3时,考虑其同时使用率非常高,将需用系数取为1,其余计算与上式公式相同(2)多组设备的计算负荷当供电范围内有多个性

18、质不同的电气设备组时,先将每一组都按上述步骤计算在各自负荷曲线上不可能同时出现,以一个同时系数来表达这种不同时率,因此其计算负荷为: 式中 有功同时系数,对于用电设备组计算负荷直接相加, 取值范围一般都在0.80.9;对于车间干线计算负荷直接相加,取值范围一般在0.850.95。无功同时系数,对于用电设备组计算负荷直接相加,取值范围一般都在0.900.95;对于车间干线计算负荷直接相加,取值范围一般在0.930.97。(3)吊车电动机组 对于吊车电动机容量要求统一换算到,因此可得换算后的设备容量为式中,为吊车电动机的铭牌容量;为与对应的负荷持续率;为其值等于25%的负荷持续率。2.1.3 负荷

19、确定 根据利用系数法机械加厂负荷计算如表2.2所示为机加工厂各车间负荷计算表。机加工一车间详细负荷计算见附录一。表2.2 机加工厂负荷计算表序号车间名称供电回路代号设备容量计算负荷KWP30/KWQ30/KvarS30/KVAI30/A0机加工一车间NO.1 供电回路131.4526.2945.4852.5379.91NO.2 供电回路8962.3062.394.77NO.3 供电回路160.7132.1455.6164.2397.7NO.4 供电回路1080812.151机加工二车间NO.1 供电回路15546.554.471.57 108.73 NO.2 供电回路1203642.155.3

20、9 84.16 NO.3 照明回路10808.00 12.15 2铸造车间NO.4 供电回路1606465.391.43 138.92 NO.5 供电回路1405657.179.98 121.51 NO.6 供电回路1807273.4102.82 156.22 NO.7 照明回路86.406.40 9.72 3铆焊车间NO.8 供电回路1504589.199.82 151.66 NO.9 供电回路17051101113.15 171.91 NO.10 照明回路75.605.60 8.51 续表2.24电修车间NO.11 供电回路150457890.05 136.82 NO.12 供电回路146

21、446578.49 119.26 NO.13 照明回路10808.00 12.15 总计1797.16616.23726.49952.64 937.37 变压器低压侧总计算负荷585.42 704.70 916.14 1393.58 2.2 无功功率补偿2.2.1 无功功率补偿概念近年来,随着我国电力工业的不断发展,大范围的高压输电网络逐渐形成,同时对电网无功功率的要求也日益严格。无功电源如同有功电源一样,是保证电力系统电能质量、降低电网损耗以及保证其安全运行所不可缺少的部分。电网无功功率不平衡将导致系统电压的巨大波动,严重时会导致用电设备的损坏,出现系统电压崩溃和稳定破坏事故。因此无功功率对

22、电力系统是十分重要的。无功功率补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。2.2.2 无功补偿提高功率因数的意义(一)改善设备的利用率因为功率因数还可以表示成下述形式: 其中线电压(KV);线电流(A)。可见,在一定的电压和电流下提高,其输出的有功功率越大,因此改善功率因数是充分发挥设备潜力,提高设备利用率的有效方法。(二)提高功率因数可减少电压损失因为电力

23、网的电压损失可借下式求出: 可以看出,影响的因素有四个:线路的有功功率P,无功功率Q,电阻R和电抗X。如果采用容抗为Xc的电容来补偿,则电压损失为 故采用补偿电容器提高功率因数后,电压损失U减少,改善了电压质量。(三)减少线路损失当线路通过电流I时,其有功损耗为: 线路有功损失P与成反比越高P越小(四)提高电力网的传输能力视在功率与有功功率成下述关系 可见,在传输一定有功功率P的条件下, 越高,所需视在功率越小。(五)减少用户开支,降低生产成本(六)减小供电设备容量,节省电网投资2.3 无功补偿容量计算2.3.1 无功功率补偿方式选择无功功率补偿的方法很多,采用电力电容器,或采用具有容性负荷的

24、装置进行补偿。1、利用过激磁的同步电动机,改善用电的功率因数,但设备复杂,造价高,只适于在具有大功率拖动装置时采用。2、利用调相机做无功功率电源,这种装置调整性能好,在电力系统故障情况下,也能维持系统电压水平,可提高电力系统运行的稳定性,但造价高,投资大,损耗也较高。每kvar无功的损耗约为1.85.5%,运行维护技术较复杂,宜装设在电力系统的中枢变电所,一般用户很少应用。3、异步电动机同步化。这种方法有一定的效果,但自身损耗大,每kvar无功功率的损耗约为419%,一般都不采用。4、电力电容器作为补偿装置,具有安装方便、建设周期短、造价低、运行维护简便、自身损耗小(每kvar功功率损耗约为0

25、.30.4%以下)等优点,是当前国内外广泛采用的补偿方法。这种方法的缺点是电力电容器使用寿命较短。电力电容器作为补偿装置有两种方法:串联补偿和并联补偿。a、 串联补偿是把是容器直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。b、 并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。由于并联电容补偿方式运行维护方便安全,且便于安装,能耗低,投资省,因此本设计采用并联电容进行无功补偿。并联电

26、容的补偿方式有可分为三种方法如表2.3所示:表2.3 并联电容无功补偿三种方法补偿方式装设地点原理电路主要特点适应范围高压集中补偿接变电所6-10KV高压母线,其电容柜一般装设在单独的高压电容室内初步投资少,运行维护方便,但只能补偿高压母线以前的无功功率适于、中型工厂变配电所做高压无功补偿低压集中补偿接变电所低压母线,其电容器柜装设在低压配电室内能补偿低压母线以前的无功功率,可使变压器的无功功率得到补偿。从而有可能减小变压器容量。且运行维护方便适于中、小型工厂或车间变电所做低压侧基本无功补偿续表2.3单独就地补偿装设在用电设备附近,与用电设备并联补偿范围最大,补偿效果最好。可缩小配电线路截面,

27、减小有色金属消耗能。但电容的利用率不高,且初投资高和维护费用较大适于负荷相当平稳且长时间使用的大容量用电设备,及容量虽小但数量多的用电设备所以根据本设计的要求选择采用低压集中补偿的方法。2.3.2 无功补偿容量的确定(1)按提高功率因数确定补偿容量 采用一组固定补偿电容器时,补偿容量按下式计算,但在负荷较轻时不应发生过补偿。式中、 补偿装置安装点负荷的平均有功功率; 补偿前的平均功率因数的正切值;补偿后希望达到的平均功率因数的正切值。采用分组自动投切的电容器组补偿时,补偿容量按下式计算。式中、-最大有功负荷。(2)按抑制电压波动和闪变确定补偿容量式中、负荷无功功率的最大变化量; 允许补偿后的最

28、大电压变动; 补偿安装点的短路容量。通过两个方案比较,此设计选择低压侧集中补偿的方法。在该设计中希望无功补偿后功率因数不小于0.9,在前面负荷计算中已经求出了每个车变的和补偿前各车变的平均功率因数,则在计算无功补偿容量选择低压集中补偿方式,同时采用分组自动投切的电容器组补偿。2.3.3 补偿容量计算(1)补偿前的变压器容量和功率因数变压器低压侧的视在计算负荷为主变压器容量选择条件为 ,因此未进行无功补偿时,主变压器容量应选容量为630 kVA的变压器两台。这时变电所低压侧的功率因数为(2)无功补偿容量按规定,变电所高压侧的cos0.9,考虑到变压器本身的无功功率损耗Q远大于其有功功率损耗P,一

29、般Q=(45)P,因此在变压器低压侧进行无功补偿时,低压侧补偿后的功率因数应略高于0.90 ,这里取cos=0.92 。 要使低压侧功率因数由063提高到092,低压侧需装设的并联电容器容量为取 Q=480kvar(3) 补偿后变压器的容量和功率因数补偿后变电所低压侧的视在计算负荷为因此每台主变压器容量可改选为500 kVA。比补偿前容量减少130 kVA。变压器的功率损耗为变电所高压侧的计算负荷为无功功率补偿,工厂的功率因数为这一功率因数满足规定(0.90)要求。(4) 无功补偿前后比较(5)补偿装置的选择本设计选用的并联电容器的型号为CLMD 53低压并联电容器,其技术参数如表2.4所示。

30、表2.4 CLMD 53低压并联电容器主要技术数据产品型号额定电压/标称容量/频率/组数每组个数CLMD 530.43040283 变电所主接线方案设计及变压器选择3.1 变电所主变压器台数与容量选择3.1.1选择主变压器台数时应考虑下列原则(1)应满足用电负荷对供电可靠性的要求。对供有大量一、二级负荷的变电所,应采用两台变压器,当一台发生故障或检修时,另一台可以对负荷持续供电。对只有二级负荷的变电所也可以只采用一台变压器,但必须有备用电源。(2)对季节性负荷或昼夜负荷变动较大而采用经济运行方式的变电所,也可考虑用两台变压器。(3)除上述两种情况外,一般车间变电所宜采用一台变压器。但负荷集中且

31、容量相当大的变电所,虽为三级负荷,也可以采用两台以上变压器。(4)在确定变电所主变压器台数时,要考虑负荷的发展,留有一定的余地。1 只装一台主变压器的变电所主变压器容量应满足全部用电设备总计算负荷的需要,即2 装有两台主变压器的变电所每台变压器的容量应满足以下两个条件:(1)任一台变压器单独运行时,宜满足总计算负荷的60%70%的需要,即 (2)任一台变压器单独运行时,应满足全部一、二级负荷的需要,即3 车间变电所主变压器的台数容量上限车间变电所主变压器的单台容量,一般不宜大于1000(或1250).一方面是受低压开关电器断流能力和短路稳定度要求的限制,另一方面可以减少低压配电线路的电路损耗、

32、电压损耗和有色金属消耗量。3.1.2 主变压器的确定(一) 供电电源条件:1) 电源由10KV总降压变电所采用电缆线路受电,电线路长300m.线路阻抗为0.38。2) 工厂总降压变电所10KV母线上的短路容量按200MVA计。3) 工厂总降压变电所10KV配电出线定时限过流保护装置的整定时间top=2s。4) 要求车间变电所最大负荷时功率因数不得低于0.9。(二)根据本厂属于二级负荷和前面视在功率的计算,再根据选择主变压器的原则,在安全可靠供电的情况下从经济角度考虑本设计中选择两台变压器给该车间进行供电。根据补偿后一次侧容量为650.1 kVA,考虑百分之15%的余量后总容量为,变压器容量,因

33、此选择其额定容 量为500 kV。变压器按冷却方式分类可分为:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。由于氟化物变压器对环境有污染所以不做考虑。如表3.1所示为干式变压器和油浸变压器对比表。表3.1 干式变压器和油浸变压器对比项目干式变压器油浸变压器特点1.高低压线圈采用F 级绝缘材料(长期耐热180);2.线圈环氧浇注,器身紧固,抗短路能力特强;节能。3.低压为箔绕组抗短路能力强;4.防潮能力强;5.长期运行免维护;6.散热性能好能承受一定的湿度,对环境要求不高油浸式变压器的绕组是浸在变压器油中的,绝缘介质就是油,冷却方式有自冷、风冷和强迫油循环冷却,其优点是冷却效

34、果好,可以满足大容量,瓦斯继电器可以及时反映出绕组的故障,保证系统的稳定运行,不足之处是得经常巡视,关注油位的变化,缺了油是件很危险的事情,变压器油随着时间失去功效;需要防止变压器油的渗漏;不适宜在地下室及消防要求高的区域安装。投入成本高成本为干变的60%,运行场所任何场所室外运行成本长期运行免维护需要经常性的维护,由于该变压器每1.5 年-2 年需要更换冷却油寿命20根据GB/T17468-1998电力变压器选用导则及由任务书可知变压器安装地点在室内,本设计选择干式变压器。如表3.2所示 为SC9-500/10树脂浇注干式变压器型号参数。表3.2 SC9-500/10树脂浇注干式变压器型号参

35、数型号额定容量(kVA)额定电压空载损耗(KW)负载损耗(KW)空载电流(%)阻抗电压(%)连接组标号一次(KV)二次 (KV)SC9-500/10500100.40.904.501.24Y,yn03.2 总配变电所的主接线方案比较选择本设计有两台变压器的小型变电所。根据本车间的情况,负荷量不大,但属于二级负荷,可靠性要求较高,有10KV高压电来进线供电;根据上面的设计原则和要求有两种方案可进行选择比较,其设计比较如下:方案一:高压侧无母线、低压侧单母线分段的双台变压器变电所主接线方式。如图3.3所示。图3.3 高压侧无母线、低压侧单母线分段的双台变压器变电所主接线图方案一:供电可靠性高,当任

36、意一台变压器或任一电源进线停电检修或发生故障时,该变压器通过闭合低压母线分段开关,即可迅速恢复对整个变电所的供电,如果两台主变压器低压侧主开关(采用电磁或电动机合闸操作的万能式低压断路器)都装设互为备用电源自动投入装置(APD),则任一主变压器低压主开关因电源断电(失压)而跳闸时,另一主变压器低压侧的主开关和低压母线分段开关将在APD作用下自动合闸,恢复整个变压所的正常供电。这种主接线可供一、二级负荷。方案二:高压采用无母线、低压双母线的主接线,其接线图如图3.4所示。图3.4 高压侧无母线单母,低压双母线接线图优点:这种方案可靠性好、运行灵活,通过两组母线隔离开关的倒换操作可轮流检修一组母线

37、不致使供电中断,一组母线检修时所有回路均不中断供电 ,检修任一回路的母线侧隔离开关时,只中断该回路的供电 。检修任一回路断路器时,可用母联断路器代替工作;扩建方便,这种方案广泛用于进出线回路较多,容量大的场合。缺点:(1)运行方式改变时,需要用母线隔离开关进行倒闸操作,操作步骤较为复杂,容易出现误操作,导致人身或设备事故。(2)任一回路断路器检修时,该回路仍需停电或短时停电。(3)增加了大量的母线侧隔离开关及母线的长度,配电装置结构较为复杂,占地面积与投资都有所增加。两种法案的比较(1) 从安全性看这两种主接线方式都满足国家的标准的技术规范的要求,能充分保证人身和设备的安全,满足供电要求。(2

38、) 从可靠性来看,方案一的可靠性比方案二的差一些。但方案二任一回路断路器检修时,该回路仍需停电或短时停电。(3) 从灵活性看,方案一操作比方案二更简单,方案二双母线机构复杂维修和维护程度大。(4) 从经济上看,方案二由于采用大量的断路器和母线的长度比方案一大幅度增加,所以初投资成本高,且线路维护工作量大,所以运行成本高,根据该工厂工作环境和条件。本厂属二级负荷。因此主接线方案选择方案一,机械加工厂车间变电所及低压配电系统主接线如附录四所示。4 短路电流的计算及一次设备的选择原则4.1 短路计算4.1.1 短路电流计算目的 为了正确选择和校验电气设备,准确计算继电保护装置的整定值,就需要计算短路

39、故障发生时通过元件的最大可能的短路电流。 由于在发电机附近短路的两相短路电流和在靠近中性点接地的变压器短路的单相短路电流可能大于三相短路电流。因此,应根据不同的供电系统模型求出: 最大短路电流:确定电器设备容量或额定参数; 最小短路电流:作为选择熔断器、整定继电保护装置的依据。4.1.2 采用三相短路电流计算为标准的原因 电力系统中,发生单相短路的可能性大;但三相短路的短路电流值最大,造成的危害也最严重。作为选择校验电气设备用的短路计算中,以最严重的三相短路电流的计算为主。4.1.3 短路电流计算的方法步骤(一)欧姆法(有名制法)1、绘制计算电路图,选择短路计算点。计算电路图上应将短路计算中需

40、计入的所有电路元件的额定参数都表示出来,并将各元件依次编号。短路计算点应选择得使需要进行短路校验的电气元件有最大可能的短路电流通过。2、计算短路回路中各主要元件的阻抗,包括电力系统、电力线路和变压器的阻抗。3、绘制短路回路等效电路,并计算总阻抗。等效电路图上标注的元件阻抗值必须换算到短路计算点。4、计算短路电流。分别对各短路计算点计算其三相短路电流周期分量、短路次暂态短路电流、短路稳态电流和短路冲击电流。(二)标幺值法(相对单位制法)1、绘制计算电路图,选短路计算点。与前面欧姆法相同。2、设定基准容量和基准电压,计算短路点基准电流。3、计算短路回路中各主要元件的阻抗标幺值,一般只计算电抗。4、

41、绘制短路回路等效电路,并计算总阻抗。采用标幺值法计算时,无论有几个短路计算点,其短路等效电路都只有一个。5、计算短路电流,与欧姆法相同。标幺制法相对于欧姆法来说有三个主要的特点:采用标幺制易于比较电力系统各元件的特性及参数,能够简化计算公式,能在一定程度上简化计算工作。本设计采用标幺值法进行短路电流计算。4.1.4 短路电流计算 如图4.1所示为根据变电所主接线方案绘制的短路等效电路图,图中标出各元件的电抗标幺值,并标明了短路计算点。图4.1 短路电流计算等效电路图按供电工程设计说明,短路计算点的短路电流如表4.2所示。详细的短路电流计算见附录二。表4.2 短路计算表短路计算点运行方式三相短路

42、电流(kA)电压(kV)三相短路容量Sk(MVA)Ik(3)ish(3)Ish(3)k-19.1723.3813.8410.5166.7k-2最大运行31.357.834.10.421.74最小运行13.2524.414.450.411.634.2 一次设备选择4.2.1 概述工厂总降压配电所的各种高压电气设备,主要指6-10KV以上的断路器,隔离开关,负荷开关,熔断器,互感器,电抗器,母线,电缆等。这些电气设备要能可靠的工作,必须按正常工作条件进行选取,并且按短路情况进行校验。所谓的正常工作条件是指:(1) 电器的额定电压不应小于所在回路的工作电压。(2) 电器的额定电流不应小于该回路的最大

43、长期工作电流。(3) 选择电器时应考虑设备的装设地点,即按工作环境,运行条件和要求,选择设备的型号规格,如屋内或屋外设备,防爆型或普通型,如工作环境、污染程度,应加强绝缘的电器,电路操作频繁时应选取胜任频繁操作的真空断路器而不应选取不适于频繁操作的少油断路器。4.2.2 一次设备的选择原则为了保证一次设备安全可靠地运行,必须按下列原则选择和校验:1)按正常工作条件,包括电压、电流、频率、开断电流等选择。2)按短路条件,包括动稳定和热稳定来校验。3)考虑电气设备运行的环境条件如温度、湿度、海拔以及有无防尘、防腐、防火、防爆等要求。4)按各类设备的不同特点和要求如断路器的操作性能、互感器的二次负荷和准确级等进行选择。4.2.3 按短路情况校验电器的稳定性(一) 短路热稳定校验短路热稳定校验就是要求所选的电器,当短路电流通过它时,其最高温度不应超过制造厂规定的短路时发热允许温度,即: 或 式中 短路电流所产生的热量;电器在短路时的允许

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号