35压电传感器ppt课件.ppt

上传人:小飞机 文档编号:1946184 上传时间:2022-12-27 格式:PPT 页数:49 大小:397.50KB
返回 下载 相关 举报
35压电传感器ppt课件.ppt_第1页
第1页 / 共49页
35压电传感器ppt课件.ppt_第2页
第2页 / 共49页
35压电传感器ppt课件.ppt_第3页
第3页 / 共49页
35压电传感器ppt课件.ppt_第4页
第4页 / 共49页
35压电传感器ppt课件.ppt_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《35压电传感器ppt课件.ppt》由会员分享,可在线阅读,更多相关《35压电传感器ppt课件.ppt(49页珍藏版)》请在三一办公上搜索。

1、3.5 压电式传感器,一.压电效应二.常见压电材料三.压电式传感器的测量电路四.压电式传感器的应用,以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。 压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。 压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。,一、压电效应正压电效

2、应(顺压电效应):某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的一定表面上产生电荷,当外力去掉后,又重新恢复不带电状态的现象。当作用力方向改变时,电荷极性也随着改变。逆压电效应(电致伸缩效应):当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失的现象。,电能,机械能,正压电效应,逆压电效应,(一)石英晶体的压电效应天然结构石英晶体的理想外形是一个正六面体,在晶体学中它可用三根互相垂直的轴来表示,其中纵向轴ZZ称为光轴;经过正六面体棱线,并垂直于光轴的XX轴称为电轴;与XX轴和ZZ轴同时垂直的Y

3、Y轴(垂直于正六面体的棱面)称为机械轴。,Z,X,Y,(a),(b),石英晶体(a)理想石英晶体的外形 (b)坐标系,Z,Y,X,通常把沿电轴XX方向的力作用下产生电荷的压电效应称为“纵向压电效应”,而把沿机械轴YY方向的力作用下产生电荷的压电效应称为“横向压电效应”,沿光轴ZZ方向受力则不产生压电效应。,石英晶体具有压电效应,是由其内部结构决定的。组成石英晶体的硅离子Si4+和氧离子O2-在Z平面投影,如图(a)。为讨论方便,将这些硅、氧离子等效为图(b)中正六边形排列,图中“”代表Si4+,“”代表2O2-。,(b),(a),+,+,-,-,-,Y,X,X,Y,硅氧离子的排列示意图(a)

4、硅氧离子在Z平面上的投影(b)等效为正六边形排列的投影,+,当作用力FX=0时,正、负离子(即Si4+和2O2-)正好分布在正六边形顶角上,形成三个互成120夹角的偶极矩P1、P2、P3,如图(a)所示。此时正负电荷中心重合,电偶极矩的矢量和等于零,即 P1P2P30,当晶体受到沿X方向的压力(FX0,在Y、Z方向上的分量为(P1+P2+P3)Y=0 (P1+P2+P3)Z=0由上式看出,在X轴的正向出现正电荷,在Y、Z轴方向则不出现电荷。,Y,+,+,+,-,-,-,X,(a) FX=0,P1,P2,P3,FX,X,Y,+,+,+,+,FX,(b) FX0,+,+,+,-,-,-,P1,P2

5、,P3,可见,当晶体受到沿X(电轴)方向的力FX作用时,它在X方向产生正压电效应,而Y、Z方向则不产生压电效应。晶体在Y轴方向力FY作用下的情况与FX相似。当FY0时,晶体的形变与图(b)相似;当FY0时,则与图(c)相似。由此可见,晶体在Y(即机械轴)方向的力FY作用下,使它在X方向产生正压电效应,在Y、Z方向则不产生压电效应。,(P1+P2+P3)X0(P1+P2+P3)Y=0(P1+P2+P3)Z=0,(c) FX0,Y,+,+,+,-,-,X,-,+,+,+,FX,FX,P2,P3,P1,+,当晶体受到沿X方向的拉力(FX0)作用时,其变化情况如图(c)。此时电极矩的三个分量为,在X轴

6、的正向出现负电荷,在Y、Z方向则不出现电荷。,晶体在Z轴方向力FZ的作用下,因为晶体沿X方向和沿Y方向所产生的正应变完全相同,所以,正、负电荷中心保持重合,电偶极矩矢量和等于零。这就表明,沿Z(即光轴)方向的力FZ作用下,晶体不产生压电效应。 假设从石英晶体上切下一片平行六面体晶体切片,使它的晶面分别平行于X、Y、Z轴,如图。并在垂直X轴方向两面用真空镀膜或沉银法得到电极面。,当晶片受到沿X轴方向的压缩应力XX作用时,晶片将产生厚度变形,并发生极化现象。在晶体线性弹性范围内,极化强度PXX与应力XX成正比,即,石英晶体切片,式中 FXX轴方向的电场强度; d11压电系数,当受力方向和变形不同时

7、,压电系数也不同,石英晶体d11=2.310-12CN-1; l、b石英晶片的长度和宽度。 极化强度PXX在数值上等于晶面上的电荷密度,即,式中 qX垂直于X轴平面上的电荷。将上两式整理,得,式中 电极面间电容。,其极间电压为,根据逆压电效应,晶体在X轴方向将产生伸缩,即 或用应变表示,则式中 EXX轴方向上的电场强度。 在X轴方向施加压力时,左旋石英晶体的X轴正向带正电;如果作用力FX改为拉力,则在垂直于X轴的平面上仍出现等量电荷,但极性相反,见图(a)、(b)。,FX,FX,+,+,+,+,(a),(b),X,X,t=d11UX,如果在同一晶片上作用力是沿着机械轴的方向,其电荷仍在与X轴垂

8、直平面上出现,其极性见图(c)、(d),此时电荷的大小为,+,+,+,+,+,+,+,+,(c),(d),FY,FY,X,X,式中 d12石英晶体在Y轴方向受力时的压电系数。根据石英晶体轴对称条件:d11=d12,则上式为式中 t晶片厚度。则其极间电压为,根据逆压电效应,晶片在Y轴方向将产生伸缩变形,即或用应变表示由上述可知: 无论是正或逆压电效应,其作用力(或应变)与电荷(或电场强度)之间呈线性关系; 晶体在哪个方向上有正压电效应,则在此方向上一定存在逆压电效应; 石英晶体不是在任何方向都存在压电效应的。,(二) 压电陶瓷的压电效应 压电陶瓷属于铁电体一类的物质,是人工制造的多晶压电材料,它

9、具有类似铁磁材料磁畴结构的电畴结构。电畴是分子自发形成的区域,它有一定的极化方向,从而存在一定的电场。在无外电场作用时,各个电畴在晶体上杂乱分布,它们的极化效应被相互抵消,因此原始的压电陶瓷内极化强度为零,见图(a)。,直流电场E,剩余极化强度,剩余伸长,电场作用下的伸长,(a)极化处理前,(b)极化处理中,(c)极化处理后,但是,当把电压表接到陶瓷片的两个电极上进行测量时,却无法测出陶瓷片内部存在的极化强度。这是因为陶瓷片内的极化强度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片的电极面上吸附了一层来自外界的自由电荷。这些自由电

10、荷与陶瓷片内的束缚电荷符号相反而数量相等,它起着屏蔽和抵消陶瓷片内极化强度对外界的作用。所以电压表不能测出陶瓷片内的极化程度,如图。,如果在陶瓷片上加一个与极化方向平行的压力F,如图,陶瓷片将产生压缩形变(图中虚线),片内的正、负束缚电荷之间的距离变小,极化强度也变小。因此,原来吸附在电极上的自由电荷,有一部分被释放,而出现放电荷现象。当压力撤消后,陶瓷片恢复原状(这是一个膨胀过程),片内的正、负电荷之间的距离变大,极化强度也变大,因此电极上又吸附一部分自由电荷而出现充电现象。这种由机械效应转变为电效应,或者由机械能转变为电能的现象,就是正压电效应。,同样,若在陶瓷片上加一个与极化方向相同的电

11、场,如图,由于电场的方向与极化强度的方向相同,所以电场的作用使极化强度增大。这时,陶瓷片内的正负束缚电荷之间距离也增大,就是说,陶瓷片沿极化方向产生伸长形变(图中虚线)。同理,如果外加电场的方向与极化方向相反,则陶瓷片沿极化方向产生缩短形变。这种由于电效应而转变为机械效应或者由电能转变为机械能的现象,就是逆压电效应。,逆压电效应示意图(实线代表形变前的情况,虚线代表形变后的情况), , , , ,极化方向,电场方向,由此可见,压电陶瓷所以具有压电效应,是由于陶瓷内部存在自发极化。这些自发极化经过极化工序处理而被迫取向排列后,陶瓷内即存在剩余极化强度。如果外界的作用(如压力或电场的作用)能使此极

12、化强度发生变化,陶瓷就出现压电效应。此外,还可以看出,陶瓷内的极化电荷是束缚电荷,而不是自由电荷,这些束缚电荷不能自由移动。所以在陶瓷中产生的放电或充电现象,是通过陶瓷内部极化强度的变化,引起电极面上自由电荷的释放或补充的结果。,二、压电材料压电晶体,如石英等;压电陶瓷,如钛酸钡、锆钛酸铅等;压电半导体,如硫化锌、碲化镉等。 对压电材料特性要求: 转换性能。要求具有较大压电常数。 机械性能。压电元件作为受力元件,希望它的机械强度高、刚度大,以期获得宽的线性范围和高的固有振动频率。 电性能。希望具有高电阻率和大介电常数,以减弱外部分布电容的影响并获得良好的低频特性。 环境适应性强。温度和湿度稳定

13、性要好,要求具有较高的居里点,获得较宽的工作温度范围。 时间稳定性。要求压电性能不随时间变化。,石英晶体 石英(SiO2)是一种具有良好压电特性的压电晶体。其介电常数和压电系数的温度稳定性相当好,在常温范围内这两个参数几乎不随温度变化,如下两图。 由图可见,在20200范围内,温度每升高1,压电系数仅减少0.016。但是当到573时,它完全失去了压电特性,这就是它的居里点。,1.00,0.99,0.98,0.97,0.96,0.95,20,40,60,80,100,120,140,160,180,200,dt/d20,斜率:0.016/,t,石英的d11系数相对于20的d11温度变化特性,6,

14、5,4,3,2,1,0,100,200,300,400,500,600,t/,相对介电常数,居里点,石英在高温下相对介电常数的温度特性,石英晶体的突出优点是性能非常稳定,机械强度高,绝缘性能也相当好。但石英材料价格昂贵,且压电系数比压电陶瓷低得多。因此一般仅用于标准仪器或要求较高的传感器中。 因为石英是一种各向异性晶体,因此,按不同方向切割的晶片,其物理性质(如弹性、压电效应、温度特性等)相差很大。为了在设计石英传感器时,根据不同使用要求正确地选择石英片的切型。,三、 压电式传感器的测量电路(一)等效电路 当压电传感器中的压电晶体承受被测机械应力的作用时,在它的两个极面上出现极性相反但电量相等

15、的电荷。可把压电传感器看成一个静电发生器,如图(a)。也可把它视为两极板上聚集异性电荷,中间为绝缘体的电容器,如图(b)。,压电传感器的等效电路,当压电晶体承受应力作用时,在它的两个极面上出现极性相反但电量相等的电荷。故可把压电传感器看成一个电荷源与一个电容并联的电荷发生器。,其电容量为:,当两极板聚集异性电荷时,板间就呈现出一定的电压,其大小为,因此,压电传感器还可以等效为电压源Ua和一个电容器Ca的串联电路,如图。,图5-14 压电传感器的等效电路(a) 电压源; (b) 电荷源,实际使用时,压电传感器通过导线与测量仪器相连接,连接导线的等效电容CC、前置放大器的输入电阻Ri、输入电容Ci

16、对电路的影响就必须一起考虑进去。当考虑了压电元件的绝缘电阻Ra以后,压电传感器完整的等效电路可表示成下图所示的电压等效电路(a)和电荷等效电路(b)。这两种等效电路是完全等效的。,注意:,利用压电式传感器测量静态或准静态量值时,必须采取一定的措施,使电荷从压电晶片上经测量电路的漏失减小到足够小程度。而在动态力作用下,电荷可以得到不断补充,可以供给测量电路一定的电流,故压电传感器适宜作动态测量。,并联方法:两片压电晶片的负电荷集中在中间电极上,正电荷集中在两侧的电极上,传感器的电容量大、输出电荷量大、时间常数也大,故这种传感器适用于测量缓变信号及电荷量输出信号。,压电晶片的连接方式,在实际应用中

17、,由于单片的输出电荷很小,因此,组成压电式传感器的晶片不止一片,常常将两片或两片以上的晶片粘结在一起。粘结的方法有两种,即并联和串联。,串联方法:正电荷集中于上极板,负电荷集中于下极板,传感器本身的电容量小、响应快、输出电压大,故这种传感器适用于测量以电压作输出的信号和频率较高的信号。,在上述两种接法中,并联接法输出电荷大,本身电容大,时间常数大,适宜用在测量慢变信号并且以电荷作为输出量的场合。 而串联接法输出电压大,本身电容小,适宜用于以电压作输出信号,并且测量电路输入阻抗很高的场合。,(二) 测量电路 压电式传感器的前置放大器有两个作用:把压电式传感器的高输出阻变换成低阻抗输出;放大压电式

18、传感器输出的弱信号。 前置放大器形式:电压放大器,其输出电压与输入电压(传感器的输出电压)成正比;电荷放大器,其输出电压与输入电荷成正比。 1、电压放大器,2、电荷放大器 电荷放大器是一个具有深度负反馈的高增益放大器,其基本电路如图。若放大器的开环增益A0足够大,并且放大器的输入阻抗很高,则放大器输入端几乎没有分流,运算电流仅流入反馈回路CF与RF。由图可知i的表达式为:,根据上式画出等效电路图,CF、RF等效到A0的输入端时,电容CF将增大(1A0)倍。电导1RF也增大了(1A0)倍。所以图中C=(1A0)CF;1/R=(1A0)1RF。,运放输入电压,输出电压,当A0足够大时,传感器本身的

19、电容和电缆长短将不影响电荷放大器的输出。因此输出电压USC只决定于输入电荷q及反馈回路的参数CF和RF。由于1RFCF,则,若考虑电缆电容Cc,则有,可见当A0足够大时,输出电压与A0无关,只取决于输入电荷q和反馈电容CF,改变CF的大小便可得到所需的电压输出。 CF一般取值100-104pF。,运算放大器的开环放大倍数A0对精度有影响,当频率很高时,则及,由此得A0104。对线性集成运算放大器来说,这一要求是不难达到的。,例,Ca=1000pF,CF=100pF,Cc=(100pF/m)100m=104pF,当要求1%时,则有,则可计算产生的误差为,当传感器感受振动时,因为质量块相对被测体质

20、量较小,因此质量块感受与传感器基座相同的振动,并受到与加速度方向相反的惯性力,此力Fma。同时惯性力作用在压电陶瓷片上产生电荷为,(一) 压电式加速度传感器其结构一般有纵向效应型、横向效应型和剪切效应型三种。纵向效应是最常见的,如图。压电陶瓷4和质量块2为环型,通过螺母3对质量块预先加载,使之压紧在压电陶瓷上。测量时将传感器基座5与被测对象牢牢地紧固在一起。输出信号由电极1引出。,qd33Fd33ma,四、压电式传感器的应用,此式表明电荷量直接反映加速度大小。其灵敏度与压电材料压电系数和质量块质量有关。为了提高传感器灵敏度,一般选择压电系数大的压电陶瓷片。若增加质量块质量会影响被测振动,同时会

21、降低振动系统的固有频率,因此一般不用增加质量办法来提高传感器灵敏度。此外用增加压电片数目和采用合理的连接方法也可提高传感器灵敏度。,(二) 压电式压力传感器 根据使用要求不同,压电式测压传感器有各种不同的结构形式。但它们的基本原理相同。 压电式测压传感器的原理简图。它由引线1、壳体2、基座3、压电晶片4、受压膜片5及导电片6组成。当膜片5受到压力P作用后,则在压电晶片上产生电荷。在一个压电片上所产生的电荷q为,F作用于压电片上的力;d11压电系数;P压强, ;S膜片的有效面积。,1,2,3,4,5,6,p,压电式测压传感器原理图,测压传感器的输入量为压力P,如果传感器只由一个压电晶片组成,则根

22、据灵敏度的定义有:,因为 ,所以电压灵敏度也可表示为 U0压电片输出电压;C0压电片等效电容,电荷灵敏度,电压灵敏度,电荷灵敏度,(三) 压电式流量计利用超声波在顺流方向和逆流方向的传播速度进行测量。其测量装置是在管外设置两个相隔一定距离的收发两用压电超声换能器,每隔一段时间(如1/100s),发射和接收互换一次。在顺流和逆流的情况下,发射和接收的相位差与流速成正比。据这个关系,可精确测定流速。流速与管道横截面积的乘积等于流量。,此流量计可测量各种液体的流速,中压和低压气体的流速,不受该流体的导电率、粘度、密度、腐蚀性以及成分的影响。其准确度可达0.5%,有的可达到0.01%。,根据发射和接收

23、的相位差随海洋深度深度的变化,测量声速随深度的分布情况,(四)集成压电式传感器 是一种高性能、低成本动态微压传感器,产品采用压电薄膜作为换能材料,动态压力信号通过薄膜变成电荷量,再经传感器内部放大电路转换成电压输出。该传感器具有灵敏度高,抗过载及冲击能力强,抗干扰性好,操作简便,体积小、重量轻、成本低等特点,广泛应用于医疗、工业控制、交通、安全防卫等领域。,脉搏计照片,典型应用: 脉搏计数探测 按键键盘,触摸键盘 振动、冲击、碰撞报警 振动加速度测量 管道压力波动 其它机电转换、动态力检测等,力敏元件主要性能指标:压力范围 1kPa灵敏度 0.2V/P非线性度 1 F.S频率响应 11000H

24、z标准工作电压 4.5V(DC)扩充工作电压 315V(DC)标准负载电阻 2.2k扩充电阻 1k12k外形尺寸 12.77.6重 量 1.5,(五)压电式传感器在自来水管道测漏中的应用,如果地面下有一条均匀的直管道某处O点为漏点,振动声音从O点向管道两端传播,传播速度为V,在管道上A、B两点放两只传感器,A、B距离为L(已知或可测),从A、B两个传感器接收的由O点传来的t0时刻发出的振动信号所用时间为tA(=LA/V)和tB(=LB/V),两者时间差为 t=tA- tB=(LA- LB)/V (1)又 L =LA+LB (2),因为管道埋设在地下,看不到O点,也不知道LA和LB的长度,已知的

25、是L和V,如果能设法求出t,则联立(1)+(2)得: LA =(L+tV)/2 (3)或者将(1)-(2)得: LB=(L-tV)/2 (4) 关键是确定t,就可准确确定漏点O。如果从O点出发的是一极短暂的脉冲,在A、B两点用双线扫描同时开始记录,在示波器上两脉冲到达的时间差就是t。,例: 压电式声传感器,压电陶瓷换能器结构图,当交变信号加在压电陶瓷片两端面时,由于压电陶瓷的逆压电效应,陶瓷片会在电极方向产生周期性的伸长和缩短 。,当一定频率的声频信号加在换能器上时,换能器上的压电陶瓷片受到外力作用而产生压缩变形,由于压电陶瓷的正压电效应,压电陶瓷上将出现充、放电现象,即将声频信号转换成了交变

26、电信号。这时的声传感器就是声频信号接收器。,如果换能器中压电陶瓷的振荡频率在超声波范围,则其发射或接收的声频信号即为超声波,这样的换能器称为压电超声换能器。,例: 压电式流量计,压电式流量计,压电超声换能器每隔一段时间(如1/100s)发射和接收互换一次。在顺流和逆流的情况下,发射和接收的相位差与流速成正比。,例:压电声传感器在超声速测量实验中的应用,超声速测量实验装置,当信号发生器产生的正弦交流信号加在压电陶瓷片两端面时,压电陶瓷片将产生机械振动,在空气中激发出声波。所以,换能器S1是声频信号发生器。,当S发出的声波信号经过空气传播到达换能器S2时,空气振动产生的压力作用在S2的压电陶瓷片上使之出现充、放电现象,在示波器上就能检测出该交变信号。所以,换能器S2是声频信号接收器。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号