《人教版七年级数学下册《532命题、定理、证明(2)》课件.pptx》由会员分享,可在线阅读,更多相关《人教版七年级数学下册《532命题、定理、证明(2)》课件.pptx(16页珍藏版)》请在三一办公上搜索。
1、空白演示,在此输入您的封面副标题,第五章相交线与平行线,5.3.2命题、定理、证明(2),问题情境一:,请同学们举出我们学过的一些真命题的例子.,创设情境引入新知,真命题,基本事实,正确性经过推理证实的命题,定理,zX.x.K,归纳新知形成概念,问题:你能再举出一些基本事实或定理的例子吗?,一、定理的概念一些命题的正确性是经过推理证实的,这样得到的真命题叫做定理.,基本知识,定理,归纳新知形成概念,二、定理的作用定理可以作为推理的依据.,基本知识,定理,基本事实和定理都可以作为推理的依据.,zX.x.K,问题情境二:,命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一
2、条”是真命题吗?如果是,说明理由,如果不是,请举出反例.,创设情境引入新知,命题,真命题,证明,归纳新知形成概念,证明的概念一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.,基本知识,证明,zX.x.K,例1,协作探究掌握新知,如图1,已知直线bc,ab.求证ac.,证明:ab(已知),1=90(垂直定义).又bc(已知),1=2(两直线平行,同位角相等).2=1=90(等量代换).ac(垂直的定义).,图1,例2,协作探究掌握新知,命题“相等的角是对顶角”是真命题吗?如果是,说出理由;如果不是,请举出反例.,答:,原命题是假命题.反例:如图2,OC是AOB的平分线,1=2,
3、但它们不是对顶角.,图2,巩固训练应用新知,练习1.在下面的括号内,填上推理的依据.,如图3,A+B=180,求证C+D=180.证明:A+B=180(已知),ADBC().C+D=180().,同旁内角互补,两直线平行,两直线平行,同旁内角互补,图3,巩固训练应用新知,练习2.命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.,答:,原命题是假命题,反例:如图4,1与2是同位角,12,它们不相等.,图4,通过本节课的学习,你有哪些新的收获?,课堂小结,课堂小结,课堂检测,在下面括号内,填上推理的根据.(1)如图5,AB和CD相交于点O,A=B.求证:C=D.证明:A=B(已知),ACBD().C=D().,图5,课堂检测,在下面括号内,填上推理的根据.(2)已知:如图6,ABBC,BCCD,且1=2.求证:BECF.证明:ABBC,BCCD(已知),=90().1=2(已知),=(等式性质).BECF().,图6,课堂检测,答案:(1)内错角相等,两直线平行;两直线平行,内错角平行.(2)ABC,DCB,垂直定义,EBC,FCB,内错角相等,两直线平行.,教材习题5.3综合运用第13题.,作业:,布置作业,