kmeans算法的简单示例备课讲稿ppt课件.ppt

上传人:小飞机 文档编号:1999592 上传时间:2022-12-30 格式:PPT 页数:13 大小:512.50KB
返回 下载 相关 举报
kmeans算法的简单示例备课讲稿ppt课件.ppt_第1页
第1页 / 共13页
kmeans算法的简单示例备课讲稿ppt课件.ppt_第2页
第2页 / 共13页
kmeans算法的简单示例备课讲稿ppt课件.ppt_第3页
第3页 / 共13页
kmeans算法的简单示例备课讲稿ppt课件.ppt_第4页
第4页 / 共13页
kmeans算法的简单示例备课讲稿ppt课件.ppt_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《kmeans算法的简单示例备课讲稿ppt课件.ppt》由会员分享,可在线阅读,更多相关《kmeans算法的简单示例备课讲稿ppt课件.ppt(13页珍藏版)》请在三一办公上搜索。

1、k-means算法的简单示例,Algorithm Procedure,Randomly select K points from complete samples as the initial center.(Thats what k means in K-means)Each point in the dataset is assigned to the closed cluster,based upon the Euclidean distance between each point and each cluster center.Each clusters center is reco

2、mputed as the average of the points in that cluster.Iterate step 2 or more until the new center of cluster equals to the original center of cluster or less than a specified threshold,then clustering finished.,3,A,B,C,D,E,F,I,G,J,H,Example,How to cluster A,B.H,J into two clusters?,4,A(1,4),B(2,4),C,D

3、,E,F,I,G,J,H,Randomly choose A,B as the centre and K=2.,Example,0,1,1,1.41,2.24,3.61,4.47,5.39,4.24,5,1,0,1.41,1,2,2.83,3.61,4.47,3.61,4.24,So,we classify A,C as a cluster and B,E,D,F,G,H,I and J as another cluster.,Step 1 and 2.,A,B,C,D,E,F,G,H,I,J,means distance AB,5,A(1,4),B(2,4),C,D,E,F,I,G,J,H,

4、Randomly choose A,B as the centre and K=2.,Example,Step 3.,The new centers of the two clusters are (1,4.5) and (3.75,2.875),6,cluster 1,cluster 2,new center,A,B,C,D,E,F,I,G,J,H,(1,4.5),(3.75,2.875),Example,0.5,1.12,0.5,1.12,1.8,3.91,4.72,5.59,4.61,5.32,2.97,2.08,3.48,2.75,3.58,0.91,1.53,2.41,1.89,2.

5、25,Step 2 again., , as the centre and K=2.,So,we classify A,B,C,D,E as a cluster and F,G,H,I,J as another cluster.,A,B,C,D,E,F,G,H,I,J,7,A,B,C,D,E,F,I,G,J,H,(1,4.5),(3.75,2.875),Example,Step 3 again., , as the centre and K=2.,The new centers of the two clusters are P(1.6,4.8) and Q(4.8,1.6),8,cluste

6、r 2,cluster 1,new center,A,B,C,D,E,F,I,G,J,H,P(1.6,4.8),Q(4.8,1.6),Example,1,0.89,0.63,0.45,1.26,3.69,4.40,5.22,4.49,5.10,4.49,3.69,5.10,4.4,5.22,0.89,0.45,1.26,1,0.63,Step 2 again.,So,we classify A,B,C,D,E as a cluster and F,G,H,I,J as another cluster.,A,B,C,D,E,F,G,H,I,J,9,A,B,C,D,E,F,I,G,J,H,P(1.

7、6,4.8),Q(4.8,1.6),Example,Step 3 again.,The new centers of the two clusters are equal to the original P(1.6,4.8) and Q(4.8,1.6),P , Q as the centre and K=2.,10,new center,cluster 2,cluster 1,Final,A,B,C,D,E,F,I,G,J,H,cluster 1,cluster 2,11,Clustering finished !,Disadvantages,one of the main disadvan

8、tages to k-means is the fact that you must specify the number of clusters(K) as an input to the algorithm.As designed,the algorithm is not capable of determining the appropriate number of clusters and depends upon the user to identify this in advance.,K=2,K=3,12,Thank you,此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号