有线电视网络结构和HFC接入基础知识.docx

上传人:小飞机 文档编号:2027801 上传时间:2023-01-02 格式:DOCX 页数:15 大小:1.67MB
返回 下载 相关 举报
有线电视网络结构和HFC接入基础知识.docx_第1页
第1页 / 共15页
有线电视网络结构和HFC接入基础知识.docx_第2页
第2页 / 共15页
有线电视网络结构和HFC接入基础知识.docx_第3页
第3页 / 共15页
有线电视网络结构和HFC接入基础知识.docx_第4页
第4页 / 共15页
有线电视网络结构和HFC接入基础知识.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《有线电视网络结构和HFC接入基础知识.docx》由会员分享,可在线阅读,更多相关《有线电视网络结构和HFC接入基础知识.docx(15页珍藏版)》请在三一办公上搜索。

1、基于NGN的HFC接入网络报告提纲第1章 HFC产生21.1 背景21.1.1 有线电视网络基本特点21.1.2 有线电视网络演进过程21.2 现状3第2章 二、HFC网络技术概要52.1 标准简介52.1.1 概述52.1.2 DOCSIS/EuroDOCSIS演进和应用情况52.1.3 PACKETCABLE标准演进和应用情况62.2 回传系统建设(噪声,回传躁声问题的的抑制,回传带宽的有效利用)62.3 双向数据实现原理DOCSIS/EuroDOCSIS62.3.1 系统结构62.3.2 通信协议框架72.3.3 物理层技术82.3.4 MAC层技术112.3.5 终端启动配置132.3

2、.6 CMTS管理132.4 话音业务实现原理PacketCable132.4.1 系统结构132.4.2 呼叫信令142.4.3 DQoS方案142.4.4 EMTA启动配置流程152.4.5 设备管理15第1章 HFC产生1.1 背景1.1.1 有线电视网络基本特点有线电视网和电话网是连接千家万户的两大网络,但是这两个网络的运行机制却是完全不同,在表1-1中对电话网与有线电视网进行了一个简单的比较,以加深对有线电视网络的认识:表1-1 电话网与传统有线电视网对比电话网传统有线电视网传输信号形态二进制基带信号射频信号复用方式时分频分传输方式点对点双向连接点对多点单向广播接入网网络结构星型,点

3、对点树型/星型,共享用户线双绞线(约1MHz)同轴电缆,(450MHz/550/750/860MHz)我们可以看到,传统的有线电视网是一个单向广播网络,网络中传输经过调制的模拟射频信号,不同的电视频道信号在网络中占用不同的频点来区分开,其用户接入同轴电缆具有远远高于电话线的频谱带宽。依赖于电视制式的不同,有线电视网络也有不同的标准之分,制式PALNTSC应用场合亚洲,欧洲美洲下行每个频道带宽8MHz6MHz上行频谱范围565MHz542MHz下行频谱范围80860MHz54860MHz1.1.2 有线电视网络演进过程早期的有线电视网络是基于完全的同轴电缆的网络,随着有线电视产业和信息技术的发展

4、,90年代初开始,在中国原有的同轴网络部分传输管道被改造为光纤,速率多为450/550MHz,就是我们通常所说的光纤同轴混合网,即HFC网(Hybrid Fiber Coax)。到90年代末期,原有的HFC网又掀起了一次改造浪潮,驱动力在于i. 原有HFC网络的老化需要更新ii. 用户数的急剧增加导致网络需要调整iii. 双向高速数据业务的驱动iv. 数字电视的发展对网络提出了更高的要求,交互式数字视频也提出了双向化的需求。新改造网络的带宽多为750M/860MHz,与此同时,光节点越来越接近用户,光纤距离变长,同轴距离缩短,更重要的是,单向的HFC网络逐步被改造为双向HFC网,同时增加前端C

5、MTS和终端CM,即可以提供宽带接入服务。1.2 现状目前中国有线电视用户网络覆盖用户已经超过一亿,其中已经有约10的网络进行了双向改造。目前大中城市典型的单向网络结构:1310二级光纤网STBTV-setRF放大器总前端本地节目卫星转播节目节目数字电视节目1550/1310一级光纤环网逻辑结构:星型,树型分前端分前端分前端光节点光节点1310二级光纤网1310二级光纤网经改造后小规模开展数据业务时,通常CMTS在总前端,典型组网如图所示:1310二级光纤网STBTV-setRF双向放大器总前端本地节目卫星转播节目节目数字电视节目1550/1310一级光纤环网逻辑结构:星型,树型分前端分前端分

6、前端光节点光节点1310二级光纤网1310二级光纤网InternetCMCMCMTS光节点光节点光节点CableRouter随着数据业务规模增长,数据城域网建设完成,大规模开展数据业务的典型组网:1310二级光纤网STBTV-setRF双向放大器总前端本地节目卫星转播节目节目数字电视节目1550/1310一级光纤环网逻辑结构:星型,树型分前端分前端分前端光节点光节点1310二级光纤网1310二级光纤网InternetCMCMCMTSCMTSCMTS数据城域网光节点光节点Router第2章 二、HFC网络技术概要2.1 标准简介2.1.1 概述网络发展的同时,标准的进展也非常迅速。CableLa

7、bs组织制定的DOCSIS/EuroDOCSIS和PacketCable标准已经成为事实上的国际标准:DOCSIS/EuroDOCSIS标准完善地定义了在HFC上进行高速数据通信的机制,并且得到非常成熟的应用。PacketCable标准定义了基于DOCSIS标准所定义的双向高速HFC数据网开展实时业务的系统框架、协议体系、各个部件接口,基于该标准的业务目前处于规模实验局阶段。中国广电总局标准化所正在制定HFC数据传输标准,目前已经到等待审查阶段,预计在今年底前会正式发布,从技术上该标准兼容EuroDOCSIS1.1/1.0。中国广电标准化所已经发布上行通道建设标准HFC网络上行传输物理通道技术

8、规范,该标准对指导双向改造有技术上的指导作用。2.1.2 DOCSIS/EuroDOCSIS演进和应用情况1997年,CableLabs发布标准DOCSIS1.0,该版本定义了基于NTSC的有线电视网络的HFC的宽带数据接入的系统框架、通信协议(重点在MAC层和物理层),各个设备的接口,系统的管理维护接口。随后,发布了基于PAL制的EuroDOCSIS1.0标准,该标准和DOCSIS1.0的核心完全一样,不同之处只是在于物理层频谱划分方案不同(参见第一章的说明)。2001年,CableLabs发布了DOCSIS1.1/EuroDOCSIS1.1,该标准兼容DOCSIS/EuroDOCSIS1.

9、0,增加定义了完善的QoS保障机制以支撑各种不同传输特点的业务,以及提高HFC MAC传输效率的级联和包头压缩机制。2002年,在Terayon公司的大力推动下,CableLabs发布了DOCSIS2.0标准,该标准增加定义了上行物理层的SCDMA和ATDMA方式。但是由于独家技术和作用不明显的原因,该跟随该标准的厂家很少,同时应用也不多。DOCSIS/EuroDOCSIS在全球特别时北美、欧洲、韩国、日本得到广泛的应用,以北美为例,截至2002年底,CM用户已经达到1300万,是xDSL用户的2倍。可以说,DOCSIS的数据应用已经非常成熟。Res DSL用户数CM用户数总用户数CM比例美国

10、用户数量5,451,54011,265,16716,716,70767.39%加拿大用户数量1,404,9001,954,9003,359,80058.19%北美总用户数量6,856,44013,220,06720,076,50765.85%2.1.3 PACKETCABLE标准演进和应用情况CableLabs在2001年发布了PacketCable1.0,该标准定义了在DOCSIS1.1网络上传输话音的系统框架、呼叫信令、编解码、QoS机制、安全机制等。到目前为止,仍然没有完全符合PacketCable商业VoIP应用,目前大多停留在规模实验局阶段,采用的技术通常是PacketCable的一

11、部分。下面列举部分海外运营商利用HFC提供VoIP业务的信息:u 北美Time Warner:今年夏天开始field test。n Primary line,市话长途包月39.95,目前支持911,没有后备电源,正在考虑线路馈电的可行性n Second-line,基础价格9.95,超出呼叫按时收费u 北美 Cablevision Systems :今年夏天开始field testn Second-line,市话长途包月34.95u 北美Comcast:正在作Primary line的field test,覆盖18万家庭u 北美Cox:刚启动VoIP的field testu 欧洲callahan

12、:field test,目前大概有8K用户,采用DOCSIS1.1和部分PacketCable技术。2.2 回传系统建设(噪声,回传躁声问题的的抑制,回传带宽的有效利用)中国广电已经发布行业标准HFC网络上线传输物理通道技术规范,该标准可以有效指导双向改造。事实上,由于技术的发展,上行通道噪声问题是可以解决的。2.3 双向数据实现原理DOCSIS/EuroDOCSIS2.3.1 系统结构HFC数据接入系统主要设备包括:电缆调制解调局端设备CMTS(Cable Modem Termination System)、操作支持系统OSS(Operation Support System)和电缆调制解调

13、器CM(Cable Modem)等。CMTS:HFC网络数据接入局端设备,是数据网络和HFC模拟射频网络的连接设备,主要完成网络数据的转发、协议处理以及射频调制解调等功能。操作支持系统服务器(OSS Server):OSS服务器提供网络的设备管理和CM 的启动配置Provisioning服务器,OSS由DHCP、TFTP、ToD、LOG、SNMP服务器组成CM:连接HFC网和用户终端,主要完成的功能包括HFC网和用户数据网络(或者数据设备)之间的数据转发、协议处理以及调制解调等功能。HFC数据接入系统基本结构如图2-1所示:图2-1 HFC数据接入系统基本组成2.3.2 通信协议框架DOCSI

14、S定义的通信协议是基于IP的,CMTS和CM所支持的协议如图所示,在这个协议栈中,核心的部分在于基于HFC的物理层和MAC层通信协议。CMTS可以作为二层或者三层的转发设备,CM为二层转发设备。2.3.3 物理层技术利用HFC网构造通信网的基础技术是数字调制技术,即通过改变射频载波的相位、频率或者幅度,使射频的带通信号携带了丰富的二进制信息。或者简单地说,数字调制技术就是二进制数字信号和模拟带通信号的一个转换技术。数字调制也称为“键控”,常用的调制方法包括:幅移键控(ASK),频移键控(FSK),相移键控(PSK)及它们的改进与变形。其中由于相移键控(多相相移键控)具有较高的频谱利用率,较强的

15、抗干扰性能而在通信系统中得到了广泛地应用,成为一种主要的调制方式。特别是四相相移键控QPSK,下面就以QPSK为例来建立数字调制的基本概念。QPSK是一种恒定包络的数字调制,这就意味着调制载波的相位随着调制信号的1或0而改变,而它的幅度是不发生变化的。四相相移键控有四种不同的调制相位,每一种相位对应着不同的输入,分别为:00、01、10、11。表2-2QPSK的可能的相位对应表;表2-2 QPSK的相位对应表二进制输入QPSKQ I0 00 11 01 1输出相位-135-45+135+45用调制信号的矢量端点分布图来表示调制情况的图称为星座图。星座图中定义了一种调制技术的两个基本参数:(1)

16、 调制信号相对于载波的幅度和相位的变化,星座点到原点的距离表示调制信号的幅度,星座点相对于水平正半轴的旋转角度表示调制信号相对于载波的相位变化;(2) 星座点与调制数字比特之间的对应关系,称为“映射”,即每个星座点对应多个比特的二进制信息。一种调制技术的特性可以由信号分布和映射关系来完全定义,也就可以由星座图来完全表现。QPSK调制方式的星座图,如图2-2所示:图2-2 QPSK调制方式的星座图QPSK调制只利用了载波的相位,所以它的星座点只分布在半径相同的圆周上。为了进一步增加传输信号的数据率,提高频谱的利用率。HFC数据接入系统中还采用了正交幅度调制(QAM)。QAM是对载波的振幅和相位同

17、时进行数字调制的一种复合调制方式。例如,图2-3是64QAM的星座图:图2-3 64QAM的星座图64QAM的星座图中有64个星座点,每个星座点映射了6个比特,同时这些星座点也对应了载波的64种幅度和相位的不同组合。在调制解调的过程中,就是根据星座图来对载波信号和信息数据比特来进行转换的。相似的,M-QAM即正交幅度调制中载波矢量的端点个数为M。其中M可以等于4,16,32,64,128等等。M-QAM的调制方式可以调制(log2M)个比特。当M=4时,4QAM和QPSK的星座图相同。M-QAM同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下,QAM星座图中可以容纳更多的星

18、座点,可实现更高的调制效率和频带利用率。各种不同的调制方式具有不同的抗干扰性能。调制方式的抗干扰性可由相邻星座点之间的最小距离来衡量,最小距离越大,抵抗噪声等干扰的能力越强。QAM调制的星座点之间的最小距离小于PSK方式,所以其抗干扰性不如PSK方式。比如,要同样达到107误码率,256QAM方式要求的信噪比要远高于QPSK方式。各种调制方式与误码率之间的对应关系见图2-4:图2-4 调制方式和误码率在HFC数据接入系统中,上行信道的噪声干扰较为严重,所以采用了抗干扰性能较强的QPSK或16QAM作为其调制方式;下行信道的传输环境比较理想,数据传输的需求也相对较大,所以可以采用调制效率较高的6

19、4QAM或256QAM调制方式。0表示了在HFC系统中采用的各种调制方式与传送的数据率的对应关系:调制方式带宽符号率数据速率净载速率下行QAM-256 8b/Sym6MHz5.36MSps42.88Mbit/s约38Mbit/s8MHz6.952MSps55.62Mbit/s约51Mbit/sQAM-64 6b/Sym6MHz5.057MSps30.34Mbit/s约27Mbit/s8MHz6.952MSps41.7Mbit/s约36Mbit/s上行QAM-16 4b/Sym0.2MHz0.16MSps0.64Mbit/s约0.5Mbit/s0.4MHz0.32MSps1.28Mbit/s约1

20、.1Mbit/s0.8MHz0.64MSps2.56Mbit/s约2.3Mbit/s1.6MHz1.28MSps5.12Mbit/s约4.6Mbit/s3.2MHz2.56MSps10.24Mbit/s约9Mbit/sQPSK 2b/Sym0.2MHz0.16MSps0.32Mbit/s约0.288Mbit/s0.4MHz0.32MSps0.64Mbit/s约0.575Mbit/s0.8MHz0.64MSps1.28Mbit/s约1.15Mbit/s1.6MHz1.28MSps2.56Mbit/s约2.3Mbit/s3.2MHz2.56MSps5.12Mbit/s约4.6Mbit/s表2-3

21、数据调制方式和速率对照表我们可以看到,HFC支持多种带宽的上行信号,这样可以给设备提供更多的选择,在不同的噪声环境下采用不同的带宽。同时我们可以看到每个上行通道的带宽和传输速率都低于下行通道,在实际产品设计中,CMTS通常设计为1下4上或者1下6上,以取得上下行速率的对称。2.3.4 MAC层技术由于HFC这种介质的特点,其MAC层技术是非常独特的:首先看看下行通道:我们知道有线电视网络是频分复用的网络,同样的,CMTS下行输出信号间或者CMTS输出信号和有线电视信号间是通过不同频谱来区分的。由于一个CMTS的下行信号会发给多个CM,所以在信道内部则是采用时分复用的方式。因为HFC网络是向下广

22、播的网络,所以下行MAC控制是非常简单的,CMTS将下行报文打到MPEGII的幀中发送,CM作为二层转发设备,有选择地接受目的地址是该CM的或者该CM所带的CPE的报文。CMTSCMCMCMMPEG数据流HFC网络上行通道间通常通过频分或者空分(星型组网、线路隔离)的方式来区分,对于同一个信道内部的不同CM间的数据发送,仍然采用时分复用的方式,但是由于上行数据,实际上是一种多点到一点的模式,所以多个CM间必须存在调度机制,使多个CM能够有序的发送数据,DOCSIS1.0定义了这样一种模式:所有上行通道时间由CMTS统一管理和分配,CMTS和CM存在MAC管理报文。CM在发送数据之前必须先公共时

23、段发送申请报文,CMTS接受到申请报文后,通过算法调度,将时间端分配给合适的CM,并将所有上行通道的时间段分配信息在下行通道广播,CM受到该报文,并在指定的时间段发送数据,这样CM间就不会发生发送碰撞的可能了。的道端SII的基础技术就OCSIS1.0当然公共时段的申请报文发送是存在碰撞可能的,DOCSIS定义了类似于802.3以太的碰撞退避机制。CMTSCMCMCM(1)申请发送时隙(2)分配时隙(3)发送数据当然这种申请分配发送的机制无法提供QoS保证,所以在DOCSIS1.1标准里又详细定义了QoS保证的机制。HFC的QoS保证机制基于面向连接的方式,通过CM的配置文件定义特定业务流SF的

24、分类原则和QoS参数,在适当的时候,CM或者CMTS申请增加该业务流或者激活业务流,一旦该业务流激活,CMTS将自动定时为该CM的SF分配符合QoS参数的时间段,在适当的时候,CMTS或者CM也可以申请删除该业务流。举一个例子,如果某个CM需要支持VoIP业务,则可以在CM配置文件中为该CM配置一个UGS类型的业务流,一旦该业务流激活,CMTS自动每隔10ms为该SF分配一定长度的时间段,CM将话音包在该时间段内发送,这样可以在HFC段获得非常接近PSTN的质量保证。CMTSCM/MTA(4)CMTS根据SF1参数,自动定时为CM分配合适的时间段(2)申请增加保证服务质量的业务流(SF1)(3

25、)申请激活SF1OSS(1)配置文件下发授权的保证服务质量的业务流SF1DOCSIS1.1所定义的上行业务流类型包括:类型说明应用举例UGS定时分配固定长度时隙VoIPUGSAD定时分配固定长度时隙,带静音检测VoIP,支持静音检测Rt-Polling定时分配申请时隙IP视频业务Nrt-Polling不定时分配申请时隙FTP等应用BestEffort尽力传送宽带数据2.3.5 终端启动配置DOCSIS定义了完善的CM启动配置流程,在这个过程中,CM真正成为一个零配置的设备,所以的运行参数都是通过上电启动配置流程动态获取。这个定义是HFC网络终端成为可以管理的终端,对HFC接入的规模应用起到了非

26、常重要的作用。2.3.6 CMTS管理DOCSIS标准还定义了CMTS和CM的SNMP网管MIB。2.4 话音业务实现原理PacketCable2.4.1 系统结构PacketCable定义的系统结构如下图所示,系统中除了DOCSIS1.1所定义的CMTS和CM,还包括呼叫管理服务器CMS(通常的产品形态就是SOTFX)、媒体网关控制器MGC、媒体网关MG、信令网关SG、一系列服务器组成的OSS服务器和媒体终端适配器MTA(类似IAD)。终端形态通常包括两种:EMTA和SMTA。所谓EMTA,是将CM和MTA集成在一起的终端设备,所谓SMTA是指单独的MTA设备。实际上,迄今为止,Packet

27、Cable只是对基于EMTA的组网作了各个接口的详细定义。2.4.2 呼叫信令PacketCable定义EMTA和CMS之间的呼叫信令为NCS,NCS是基于MGCP1.0,针对Cable应用和QoS需要,做了少量的限制和扩展而成。2.4.3 DQoS方案PacketCable定义了基于DOCSIS1.1实现动态QoS的机制:CMS内置QoS策略模块GC(类似于策略服务器),CMTS内置Gate模块,在话音信令变化过程中,CMS感知到动态信令状态的变化,并通过COPS接口向CMTS进行基于该业务的QoS授权;E-MTA感知到信令变化后在适当的时候向CMTS发起DOCSIS1.1 SF 连接增加或

28、者激活申请,CMTS依据CMS授权信息接纳或者拒绝EMTA的申请。CMS GCCMTSE-MTAGateCOPS,CMS感知业务并向CMTS作动态QoS授权DOCSIS1.1,终端感知业务并发起维护QoS保证的业务流连接2.4.4 EMTA启动配置流程EMTA启动配置包括两部分:CM启动配置和MTA启动配置。CM启动配置流程参见前面DOCSIS的介绍MTA的启动配置过程见下图所示,同样的,这个定义是全球最早的针对NGN终端启动流程的详细定义,将对VoIP规模应用起到重要的作用。MTAKDCServerDNSServerTFTPServerDHCPServerProvisioningServer(1)获取IP地址及域名(2)解析KDC地址(3)获取密钥(4)生成配置文件并配置TFTP服务器名,路径,配置文件文件名(6)下载配置文件(5)解析TFTP服务器IP地址

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号