磁感应式无触点电子点火系统参考文件.docx

上传人:牧羊曲112 文档编号:2049655 上传时间:2023-01-04 格式:DOCX 页数:8 大小:417.32KB
返回 下载 相关 举报
磁感应式无触点电子点火系统参考文件.docx_第1页
第1页 / 共8页
磁感应式无触点电子点火系统参考文件.docx_第2页
第2页 / 共8页
磁感应式无触点电子点火系统参考文件.docx_第3页
第3页 / 共8页
磁感应式无触点电子点火系统参考文件.docx_第4页
第4页 / 共8页
磁感应式无触点电子点火系统参考文件.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《磁感应式无触点电子点火系统参考文件.docx》由会员分享,可在线阅读,更多相关《磁感应式无触点电子点火系统参考文件.docx(8页珍藏版)》请在三一办公上搜索。

1、第四节 磁感应式无触点电子点火系统 (助学课件)磁感应式无触点电子点火系统也叫磁脉冲式无触点电子点火系统,它主要由磁感应式分电器(内装磁感应点火信号发生器)、点火电子组件、专用点火线圈、火花塞等组成。 图4-23为日本丰田MS75系列汽车上装用的磁感应式无触点电子点火系统的原理电路图。该分电器中仍保留传统的配电器、离心提前机构和真空提前机构。一、磁感应信号发生器的组成 磁感应信号发生器用来产生点火控制信号,装在分电器内的底板上,如图4-24所示,它由装在分电器轴上的信号转子以及永久磁铁、铁心和绕在铁心上的传感线圈等组成。信号转子由分电器轴驱动,转子上的凸齿数与发动机气缸数相等。 磁感应点火信号

2、发生器是利用电磁感应原理工作的,当通过传感线圈的磁通发生变化时,在传感线圈内便产生交变电动势,它相当于一个极小的发电机。其永久磁铁的磁路是;永久磁铁N极一空气隙一信号转子一空气隙一铁心(通过传感线圈)一永久磁铁S极。当发动机未转动时,信号转子不动,通过传感线圈的磁通未发生变化,传感线圈不产生电动势,因而无信号输出。当发动机转动时,信号转子便由分电器轴带动旋转,这时信号转子的凸齿与铁心间的空气隙将发生变化,使通过传感线圈的磁通发生变化,因此在传感线圈中便产生感应电动势。信号发生器的具体工作过程如下: 当信号转子的两个凸齿中央正对铁心的中心线时,如图4-25a所示,磁路中凸齿与铁心间的空气隙最长,

3、通过传感线圈的磁通量最小,且磁通变化率为零。 如果信号转子顺时针转动,信号转子的凸齿逐渐接近铁心,凸齿与铁心间的空气隙越来越小,通过传感线圈的磁通逐渐增大。当信号转子凸齿的齿角与铁心边线相对时,如图4-25b所示,通过传感线圈的磁通急剧增加,磁通变化率最大;当信号转子转过图4-2后,虽然磁通仍在增加,但磁通变化率降低;当信号转子凸齿的中心正对铁心的中心线时,如图4-25c所示,空气隙最小,通过传感线圈的磁通最大,但此时磁通变化率为零。 当信号转子继续顺时针转动时,凸齿与铁心间的空气隙逐渐增大,通过传感线圈的磁通逐渐减小;当信号转子凸齿的齿角正对铁心的边缘时,如图4-25d所示,磁通急剧的减小,

4、通过传感线圈的磁通变化率为负向最大值。 由上述分析可知,信号转子转动过程中,通过传感线圈的磁通的变化情况如图4-26a所示,图中a、b、c、d各点与图425工作过程中的a、b、c、d位置相对应。当信号转子转一周时,通过传感线圈的磁通出现六次最大值和六次最小值。 由于传感线圈感应电动势的大小与线圈磁通变化率成正比,因而当图426a中a、c点磁通变化为零时,其感应电动势也为零。图中b、d点磁通变化率为最大时,其感应电动势也为最大,所不同的是b点的磁通为增加,d点的磁通为减小,致使两点产生的感应电动势极性相反,如图4-26b所示,可见信号转子转动时,传感器线圈两端产生的信号是交变电动势。信号转子转一

5、周,产生六个交变信号,该交变信号输入到点火器,以控制点火系统工作。 当发动机转速变化时,传感线圈中的磁通变化率也跟着变化。转速越高、磁通变化率越大,感应电动势也越高。不同转速时,传感线圈内的磁通及感应电动势的变化情况如图4-27所示。 由于信号转子的凸齿和铁心之间的空气间隙,直接影响到磁路的磁阻和传感线圈输出信号电压的高低,因而使用中空气间隙的大小不能随意变动。如间隙变化,应进行正确调整。 磁感应信号发生器结构较简单,便于批量生产,耐高温,适用各种环境下工作,90年代以前被广泛采用,其缺点是低速时信号较弱,不能完全反映触点信号,影响控制精度,90年代后较少用于电子点火系统。 二、磁感应式无触点

6、电子点火系统的基本电路及工作原理(见图4-23)点火器组装在一个小盒内,用来对点火系统的工作进行控制。点火器中有5个晶体管,VT1是NPN型晶体管,由于其发射极与基极相连接,故相当于一个二极管(如图4-28),只有当图中P点电位高于A点电位(晶体管VTl的基极电位高于集电极电位)时,VT1才导通,VT1主要起温度补偿作用。VT2为触发管,起信号检测作用。VT3、VT4起放大作用,将VT2的输出进行放大以驱动VT5。VT5为大功率管,串联在点火线圈的初级电路中,控制初级电路的通断。工作原理如下: 1)发动机未转动时,信号发生器传感线圈输出电压为零。当接通点火开关S后,在蓄电池直流电压的作用下,V

7、T1处于正向电压作用而导通,蓄电池电流经R4、R1、VTl、传感线圈构成回路。此时,在蓄电池直流电压作用下,P点电位高于晶体管VT2的开启电压Ube,晶体管VT2处于导通状态,VT2导通后,其集电极电位降低,使晶体管VT3处于截止状态。VT3截止时,蓄电池通过只,向晶体管VT4提供基极电流,使VT4导通,VT4导通时,R7上的电压降给大功率管VT5提供正向偏压,使VT5导通,接通初级电路,其电路是:蓄电池“+”-点火开关-附加电阻Rf-点火线圈初级绕组-VTs-搭铁一蓄电池“”,此时初级绕组中有电流流过,在线圈中形成磁场。 2)传感线圈产生正向信号电压时,起动发动机,分电器开始转动,信号发生器

8、的传感线圈开始产生交变电动势信号。当传感线圈产生正向电压时,即图4-23中A端为正、B端(搭铁端)为负时VTl处于反向电压作用而截止,此时P点仍保持其高电位,使VT2继续导通,VT3继续截止,VT4、VT5继续导通,点火线圈初级绕组继续保持有电流通过。 因此,在传感线圈产生正向信号电压的瞬间,与发动机不转动时一样,VT2、VT5继续导通,点火线圈初级电流继续保持接通。 3)传感线圈产生负向信号电压时,当分电器继续转动,传感线圈产生负向信号电压时,即图4-23中B端为正、A端为负时,使VTl导通,P点电位降低。当P点的电位低于VT2开启电压Ube时,VT2开始截止,当VT2截止后,蓄电池通过R4

9、、R2向VT3提供基极电流,使VT3导通,VT3导通后则使VT4、VT5截止,初级绕组中的电流被切断,磁场迅速消失,次级绕组产生高压电。 点火信号发生器输出电压与晶体管VT2、VT5以及次级电压U2之间的关系如图4-29所示。图中以粗直线为界,电压高于粗直线,VT2、VT5导通,接通初级电路;电压低于粗直线,VT2、VT5截止,切断初级电路,点火线圈产生高压电。发动机不断转动,重复上述过程,点火线圈不断产生高压电,每转一周,各缸轮流点火一次。 由上述可知,该点火器工作中,只要点火开关处于接通状态,尽管发动机还未转动,由于VT2、VT5导通,点火线圈中就有初级电流,因此停车时,不要忘记关断点火开

10、关。这一点也是该点火器需要改进的地方。 4)其他元件的作用 VTl管的作用,VTl起温度补偿作用,使VT2的导通与截止时间不受温度影响。其补偿原理是:高温时,VT,的导通电压Ube降低,VT2较常温时提前导通、截止滞后,从而使点火时间推迟,且温度越高,延迟时间越长。而当采用温度特性相同的VT,与VT2并联后,温度升高时,VTl的基极与集电极时(相当于二极管)的正向电压降也下降,使P点电位降低,正好补偿了VT2在温度升高时导通电压Ub降低的影响,使VT2的导通和截止时间与常温时相同。 稳压管的作用,vs1、vs2两个稳压管反向串联后,与点火信号发生器的传感线圈并联,其作用是高转速传感线圈产生的信

11、号电压高于稳压管的反向击穿电压时,稳压管立即导通,将传感线圈输出的正向和负向信号电压波峰全部削平,使其稳定在某一数值,保护VTl和VT2不受损害。VS3与R4组成稳压电路,其作用是保证VT1和VT2在稳定的电源电压下工作。因为电源电压升高时,会使P点电位升高,造成VT2通导时间增长,点火时间延迟。VS4的作用是保护VT5管,当VT5截止时,VS4可将初级绕组的自感电动势限制在某一值2内,保2护VT5不致被击穿。 电容器的作用,C1的作用是消除点火信号放生器传感线圈输出电压波形上的毛刺,使电压平滑稳定,防止误点火,使点火时间准确无误。C2与R4组成阻容吸收电路,其作用是吸收瞬时过电压,防止误点火。 电阻R3的作用,R,为正反馈电阻,加速VT2(也是VT5)翻转。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号