清华大学结构力学第六章ppt课件.ppt

上传人:牧羊曲112 文档编号:2089595 上传时间:2023-01-09 格式:PPT 页数:88 大小:1.72MB
返回 下载 相关 举报
清华大学结构力学第六章ppt课件.ppt_第1页
第1页 / 共88页
清华大学结构力学第六章ppt课件.ppt_第2页
第2页 / 共88页
清华大学结构力学第六章ppt课件.ppt_第3页
第3页 / 共88页
清华大学结构力学第六章ppt课件.ppt_第4页
第4页 / 共88页
清华大学结构力学第六章ppt课件.ppt_第5页
第5页 / 共88页
点击查看更多>>
资源描述

《清华大学结构力学第六章ppt课件.ppt》由会员分享,可在线阅读,更多相关《清华大学结构力学第六章ppt课件.ppt(88页珍藏版)》请在三一办公上搜索。

1、1,静定结构的位移计算,第六章,6-1 概述,6-2 变形体虚功原理及位移计算一般公式,6-3 支座移动和温度变化时的位移计算,6-4 静定结构在荷载作用下的位移计算,6-5 图乘法,6-6 互等定理,6-7 结构位移计算公式的另一种推导,2,6-1 概述,一、静定结构的位移,静定结构在荷载、温度变化、支座移动以及制造误差等因素作用下,结构的某个截面通常会产生水平线位移、竖向线位移以及角位移。,1.截面位移,桁架受荷载作用,刚架受荷载作用,3,2.广义位移,通常把两个截面的相对水平位移、相对竖向位移以及相对转角叫做广义位移。,a),支座B下沉,温度变化,4,b),c),相对竖向位移,相对水平位

2、移,5,A左、右截面相对转角,e),d),6,次梁跨中挠度主梁跨中挠度楼盖跨中挠度吊车梁跨中挠度,二、位移计算的目的,1)验算结构的刚度,7,2)为超静定结构的内力和位移计算准备条件,求解超静定结构时,只利用平衡条件不能求得内力或位移的唯一解,还要补充位移条件。,12kN,7.5kN.m,9kN.m,2m,2m,A,B,8,三、实功和虚功:,1.实功,力 在由该力引起的位移 上所作的功称为实功。即,右图中,外力是从零开始线性增大至,位移也从零线性增大至。也称为静力实功。,9,2.虚功,力FP在由非该力引起的位移上所作的功叫作虚功。,10,实功:,虚功:,虚功强调作功的力与位移无关。,11,6-

3、2 变形体虚功原理及位移计算一般公式,一、变形体虚功原理,定义:设变形体在力系作用下处于平衡状态,又设该变形体由于其它原因产生符合约束条件的微小连续变形,则外力在位移上做的外虚功W恒等于各微段应力的合力在变形上作的内虚功Wi,即W=Wi。,12,下面讨论W及Wi 的具体表达式。,13,14,外力虚功:,微段ds的内虚功dWi:,整根杆件的内虚功为:,15,根据虚功方程W=Wi,所以有:,结构通常有若干根杆件,则对全部杆件求总和得:,16,17,变形体虚功原理有两种应用形式,即虚力原理和虚位移原理。虚力原理:虚设平衡力系求位移;虚位移原理:虚设位移求未知力。用变形体虚力原理求静定结构的位移,是将

4、求位移这一几何问题转化为静力平衡问题。,二、位移计算的一般公式,所以,在变形体虚功方程中,若外力只是一个单位荷载,则虚功方程为:,18,下面以图示刚架为例对位移计算的一般公式加以具体说明。,给定位移、变形,虚设平衡力系,1.欲求,则在C截面加上竖向单位载荷,则该静定刚架就产生了一组平衡力系。,19,2.位移计算一般公式 外力虚功 内虚功 所求位移,给定的位移和变形。力和位移无关。,20,2)正负号规则:若 及 使杆件同侧纤维伸长,则乘积为正,反之为负;乘积 及 的正负号分别由力与应变的正负号确定。使隔离体产生顺时针转动为正,反之为负,以顺时针方向为正,反之为负;以拉力为正,压力为负,以拉应变为

5、正,压应变为负;若 与 同向,则乘积 为正,反之为负。,21,4)根据所求位移的性质虚设相应的单位载荷。,图示单位荷载分别求位移,5)求位移步骤如下:沿拟求位移方向虚设性质相应的单位载荷;求结构在单位载荷作用下的内力和支座反力;利用位移计算一般公式求位移。,22,例6-2-1 已知杆AB和BC在B处有折角(见图a),求B点下垂距离。,a),1)将制造误差明确为刚体位移,即在B截面加铰,见图b)。,解:,23,2)虚设平衡力系如图c)所示。运用虚功方程W=0得:,1/3,24,例6-2-2 已知杆AB在B左、右截面有竖向相对错动 见图a),求。,25,解:1)将制造误差明确为刚体位移,将截面B变

6、为滑动联结,见上页图 b)。2)虚设平衡力系如图c)所示。运用虚功方程W=0得:,26,例6-2-3 已知一直杆弯曲成圆弧状,求杆中挠度。,解:虚设平衡力系如图所示,运用变形体虚功方程 得:,给定位移,虚设平衡力系,27,三、广义位移的计算,求图a)结构A、B截面相对水平位移。,+,a)给定位移,28,虚设单位载荷如上图c),d)所示。,由上图b)可得:,所以得:,29,所以,为了求两个截面的相对位移,只需要在该两个截面同时加一对大小相等,方向相反,性质与所求位移相应的单位荷载即可。,下面给出几种情况的广义单位荷载:,30,2),31,例6-2-4 因温度变化底板AB弯曲成半径R=10m之圆弧

7、状,求截面C、D的相对水平位移。,给定位移,虚设平衡力系,在截面C、D上加一对大小相等、方向相反、沿水平方向的单位荷载如图所示。,解:,32,注意,AC、BD杆无弯曲变形。,33,6-3 支座移动和温度变化时的位移计算,一、支座移动时的位移计算,若静定结构只有支座移动而无其他因素作用,则结构只产生刚体位移而无变形,故对于杆件的任意微段,应变 均为零。所以支座移动时的位移计算公式为:,34,例6-3-1 已知刚架支座B向右移动a,求。,解:,1)求,求,35,2)求,3)求,36,二、温度变化时的位移计算,静定结构在温度变化作用下各杆能自由变形,所以结构不产生内力。,1.是温度改变值,而非某时刻

8、的温度。,37,2.温度沿杆件截面厚度方向成线性变化。,截面上、下边缘温差:,对于矩形截面杆件,。,杆轴线处温度改变值:,38,3.微段ds的应变,拉应变,弯曲应变,剪应变,4.位移计算公式,39,小结:,2),40,解:,41,42,6-4 静定结构在荷载作用下的位移计算,一、基本公式,求下图示结构在荷载作用下的位移。,43,若结构只有荷载作用,则位移计算一般公式为:,上式适用的条件是:小变形,材料服从虎克定律,,即体系是线性弹性体。,44,正负号规则:,45,若结构除荷载外,还有支座移动和温度变化,则位移计算公式为:,2)和 以拉力为正,压力为负;,3)和 的正负号见下图。,46,二、各类

9、结构的位移计算公式,1.梁和刚架,在梁和刚架中,由于轴向变形及剪切变形产生的位移可以忽略,故位移计算公式为:,在高层建筑中,柱的轴力很大,故轴向变形对位移的影响不容忽略。,对于深梁,即h/l 较大的梁,剪切变形的影响不容忽略。,47,2.桁架,桁架各杆只有轴力,所以位移计算公式为:,4.拱,拱轴截面轴向变形的影响通常不能忽略:,3.组合结构,用于弯曲杆,用于二力杆,48,例6-4-1 求简支梁中点竖向位移,并讨论剪切变,形对位移的影响。,49,解:,50,若杆截面为矩形,则k=1.2;又=1/3,则E/G=2(1+)=8/3,I/A=h2/12。,若h/l=1/10,则,h/l=1/2,则,可

10、见,剪切变形的影响不能忽略。,51,6-5 图乘法,图乘法是一种求积分的简化计算方法,它把求积分的运算转化为求几何图形的面积与竖标的乘积的运算。,一、图乘法基本公式,52,53,说明:1)条件:AB杆为棱柱形直杆,即EI等于常数;Mi与Mk图形中有一个是直线图形。2)y0与的取值:y0一定取自直线图形,则取自另一个图形,且取的图形的形心位置是已知的,不必另行求解。3)若y0与在杆轴或基线的同一侧,则乘积y0取正号;若y0与不在杆轴或基线的同一侧,则乘积y0取负号。,54,二、常见图形的几何性质,55,三、图乘法举例,运用图乘法进行计算时,关键是对弯矩图进行分段和分块,尤其是正确的进行分块。,5

11、6,分段 图均应分为对应的若干段,然后进行计算。,57,分块只对 或 中的一个图形进行 分块,另一个图形不分块。,58,例6-5-1 求。,解:,作 图 图,如上图所示。,分段:,分为AC、CB两段,分块:图的CB段分为两块。,MP,59,此题还可以这样处理:先认为整个AB杆的刚度是,再加上刚度为 的AC段,再减去刚度为 的AC段即可。,60,例6-5-2 求,EI等于常数。,解:,作 图 图,如右图所示。,分段:,分为AC、CB两段。分块:图的AC段分为两块。,61,如果将AC段的 图如下图那样分块,就比较麻烦。,图,例6-5-3 求,EI等于常数。,作 图 图,如下页图所示。,解:,62,

12、63,例6-5-4 求,EI等于常数。,解:,作 图及 图,如右所示。,分段:,分为AB、BC两段。分块:图的BC段分为两块。,64,65,例6-5-5 求CH,EI等于常数。,解:,作MP图和 图见下页图。分块:MP图的AB段分为两块。,66,67,6-6 互等定理,互等定理适用于线性变形体系,即体系产生的是小变形,且杆件材料服从虎克定律。,一、功的互等定理,功的互等本质上是虚功互等。,下图给出状态I和状态II。,68,令状态I的平衡力系在状态II的位移上做虚功,得到:,69,同样,令状态II的平衡力系在状态I的位移上做虚功,得到:,所以,即,70,定理 在任一线性变形体系中,第一状态的外力

13、在第二状态的位移上所做的虚功W12等于第二状态的外力在第一状态的位移上所做的虚功W21。,二、位移互等定理,定理 在任一线性变形体系中,由荷载FP1引起的与荷载FP2相应的位移影响系数21等于由荷载FP2引起的与荷载FP1相应的位移影响系数12。即 12=21,即,71,由功的互等定理可得:,在线性变形体系中,位移ij与力FPj的比值是一个常数,记作ij,即:,或,于是,所以,72,73,例6-6-1 验证位移互等定理。,解:,74,所以,例6-6-2 验证位移互等定理。,75,解:,所以,76,三、反力互等定理,反力互等定理只适用于超静定结构,因为静定结构在支座移动时只产生刚体位移,其内力和

14、支座反力均等于零。,根据功的互等定理有:,77,在线性变形体系中,反力FRij与Cj的比值为一常数,记作rij,即,或,所以,得,说明:rij 也称为刚度系数,即产生单位位移所需施加的力。其量纲为。i 产生支座反力的方位;j 产生支座移动的支座。,78,例6-6-3 验证反力互等定理。,可见:r12=r21,定理 在任一线性变形体系中,由位移C1引起的与位移C2相应的反力影响系数r21等于由位移C2引起的与位移C1相应的反力影响系数r12。,79,四、位移反力互等定理,根据功的互等定理有:,令,上述支座可以是其它种类的支座,则支座位移、支座反力应与支座种类相应。,80,位移反力互等定理在混合法

15、中得到应用。,所以,由此得到,即,定理 在任一线性变形体系中,由位移C2引起的与荷载FP1相应的位移影响系数 在绝对值上等于由荷载FP1引起的与位移C2相应的反力影响系数,但二者符号相反。,81,例6-6-4 验证位移反力互等定理。,82,6-7 结构位移计算公式的 另一种推导,本节讨论问题的思路是:先导出局部变形时的位移公式,然后运用叠加原理,导出结构位移计算的一般公式。,一、局部变形时静定结构的位移计算公式,先讨论三个例题。,例6-7-1 下图示悬臂梁B左右截面有相对转角,试求A截面竖向位移。,83,令虚设平衡力系在实际位移上做虚功,可得出:,解:,84,b,在截面B上加上滑动连结,把实际

16、位移表示为刚体位移。在截面A沿方向加上单位荷载,在B左右截面虚设一对剪力 如图所示。显然:,令虚设平衡力系在实际位移上做虚功,可得出:,解:,例6-7-2 图示悬臂梁B截面有相对剪切位移,试求A截面沿 方向位移。,85,在截面B上加上轴向连结,把实际位移表示为刚体位移。在截面A沿方向加单位荷载,在B左右截面虚设一对轴力 如图所示。显然:,令虚设平衡力系在实际位移上做虚功,可得出:,解:,C,例6-7-3 图示悬臂梁B截面有相对轴向位移,试求A截面沿 方向位移。,86,二、微段变形时的位移计算公式,下图示梁除了微段ds有局部变形外,杆件其余部分没有变形。,87,把微段BC(ds)的三个应变集中到截面C,这样就可以把微段BC的变形当作截面C的局部变形。根据前面三个例题的结论,应用虚功原理,就可以求得A截面沿方向由微段ds的变形所产生的位移增量d:,三、结构位移计算的一般公式,整根杆件的变形在A点产生的位移可以由每个微段变形在该点引起的微小位移叠加得到,即:,88,结构通常由若干根杆件组成,对上式取总和就得到整个结构变形时在某截面产生的位移:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号