《矩阵特征值ppt课件.ppt》由会员分享,可在线阅读,更多相关《矩阵特征值ppt课件.ppt(47页珍藏版)》请在三一办公上搜索。
1、矩阵的特征值及特征向量,一、特征值与特征向量的概念二、特征值与特征向量的性质三、特征值与特征向量的求法,说明,一、特征值与特征向量的概念,解,例1,例,解,解,得基础解系为:,例 证明:若 是矩阵A的特征值,是A的属于的特征向量,则,证明,证明,则,即,类推之,有,二、特征值和特征向量的性质,把上列各式合写成矩阵形式,得,注意,.属于不同特征值的特征向量是线性无关的,.属于同一特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量,.矩阵的特征向量总是相对于矩阵的特征值而言的,一个特征值具有的特征向量不唯一;一个特征向量不能属于不同的特征值,例5 设A是 阶方阵,其特征多项式为,解,三、特
2、征值与特征向量的求法,求矩阵特征值与特征向量的步骤:,四、小结,思考题,思考题解答,5、3 相似矩阵,一、相似矩阵与相似变换的概念二、相似矩阵与相似变换的性质三、利用相似变换将方阵对角化,一、相似矩阵与相似变换的概念,1.等价关系,二、相似矩阵与相似变换的性质,证明,推论 若 阶方阵A与对角阵,利用对角矩阵计算矩阵多项式,利用上述结论可以很方便地计算矩阵A 的多项式.,定理,证明,证明,三、利用相似变换将方阵对角化,命题得证.,说明,如果 的特征方程有重根,此时不一定有 个线性无关的特征向量,从而矩阵 不一定能对角化,但如果能找到 个线性无关的特征向量,还是能对角化,例1 判断下列实矩阵能否化为对角阵?,解,解之得基础解系,求得基础解系,解之得基础解系,故 不能化为对角矩阵.,解,解之得基础解系,所以 可对角化.,注意,即矩阵 的列向量和对角矩阵中特征值的位置要相互对应,四、小结,相似矩阵 相似是矩阵之间的一种关系,它具有很多良好的性质,除了课堂内介绍的以外,还有:,相似变换与相似变换矩阵,这种变换的重要意义在于简化对矩阵的各种运算,其方法是先通过相似变换,将矩阵变成与之等价的对角矩阵,再对对角矩阵进行运算,从而将比较复杂的矩阵的运算转化为比较简单的对角矩阵的运算,相似变换是对方阵进行的一种运算,它把A变成,而可逆矩阵 称为进行这一变换的相似变换矩阵,思考题,思考题解答,