《刚体定轴转动的动量矩定理和动量矩守恒ppt课件.ppt》由会员分享,可在线阅读,更多相关《刚体定轴转动的动量矩定理和动量矩守恒ppt课件.ppt(16页珍藏版)》请在三一办公上搜索。
1、3.2定轴转动的动量矩定理和动量矩守恒定律,大学物理 祝之光 编 高等教育出版社,曹 青 松,Email:,1 质点的动量矩,质量为 的质点以速度 在空间运动,某时刻相对原点 O 的位矢为,质点相对于原点的动量矩为,大小,的方向符合右手法则.,一、动量矩,一、动量矩,如质点以角速度 作半径为 的圆运动,相对圆心的动量矩:,质点对定点O的动量矩 在某给定轴OZ上的投影 称为质点对轴OZ的动量矩。,2 刚体对转轴的动量矩,一、动量矩,由多刚体组成的系统:,L为正,其方向沿Oz正向,反之沿Oz负向.,二、刚体定轴转动的动量矩定理,刚体转动的转动定律:,即:刚体所受的外力矩等于动量矩对时间的变化率。,
2、作用于刚体上冲量矩等于刚体动量矩的增量。,动量矩守恒定律是自然界的一个基本定律.,内力矩不改变系统的动量矩.,守 恒条件,若,三、刚体定轴转动的动量矩守恒,,则,有许多现象都可以用动量矩守恒来说明.,花样滑冰跳水运动员跳水,1.对一般的质点系统,若质点系相对于某一定点所受的合外力矩为零时,则此质点系相对于该定点的动量矩始终保持不变.,2.动量矩守恒定律与动量守恒定律一样,也是自然界的一条普遍规律.,被 中 香 炉,惯性导航仪(陀螺),动量矩守恒定律在技术中的应用,例1:质量为m1,长为l的均匀直棒,可绕垂直于棒的一端的水平轴O无摩擦的转动,它原来静止在水平位置处,现在一质量为m2的弹性小球飞来
3、,正好在棒的下端与棒垂直相撞,撞后,棒从平衡位置处摆动达到最大角度,求:(1)碰后瞬间棒的角速度(2)小球的初速度,O,(1),解:,球与杆在碰撞过程中,所受外力矩近似为零,在水平面上,碰撞过程中系统动量矩守恒.,即:,例2:在光滑水平桌面上放置一个静止的质量为m、长为2l、可绕过与杆垂直的光滑轴中心转动的细杆.有一质量为m的小球以与杆垂直的速度 与杆的一端发生完全弹性碰撞,求小球的反弹速度 及杆的转动角速度.,弹性碰撞EM守恒,(2),其中,联立(1)、(2)式求解,例3 一杂技演员 M 由距水平跷板高为 h 处自由下落到跷板的一端A,并把跷板另一端的演员N 弹了起来.设跷板是匀质的,长度为
4、l,质量为,跷板可绕中部支撑点C 在竖直平面内转动,演员的质量均为m.假定演员M落在跷板上,与跷板的碰撞是完全非弹性碰撞.问演员N可弹起多高?,解 碰撞前 M 落在 A点的速度,碰撞后的瞬间,M、N具有相同的线速度,把M、N和跷板作为一个系统,动量矩守恒,解得,演员 N 以 u 起跳,达到的高度,例4 质量很小长度为l 的均匀细杆,可绕过其中心 O并与纸面垂直的轴在竖直平面内转动.当细杆静止于水平位置时,有一只小虫以速率 垂直落在距点O为 l/4 处,并背离点O 向细杆的端点A 爬行.设小虫与细杆的质量均为m.问:欲使细杆以恒定的角速度转动,小虫应以多大速率向细杆端点爬行?,解 小虫与细杆的碰撞视为完全非弹性碰撞,碰撞前后系统角动量守恒,由角动量定理,即,考虑到,