《更新时刻的确定概述ppt课件.ppt》由会员分享,可在线阅读,更多相关《更新时刻的确定概述ppt课件.ppt(35页珍藏版)》请在三一办公上搜索。
1、第九章 汽车使用寿命,第一节 概述第二节 汽车使用寿命评价指标第三节 更新理论第四节 更新时刻的确定第五节 总成互换修理的汽车寿命,第四节 更新时刻的确定,确定车辆更新时刻,是汽车运输企业及各级经济组织管理决策中的重要问题之一。当一辆汽车已磨损到不能使用,且不宜大修时,换用一辆相同性能的车辆,这是一种简单的替换。汽车运输企业车辆更新,过去就采用这种简单替换方法。这种替换没有明确的技术经济分析做依据,无所谓“最佳更新时机”。,在技术进步高速发展的条件下,汽车运输企业应更多地以效能更高、结构更加完善的先进车型,代替物理上不能使用和经济上不宜继续使用的陈旧车辆。更换规模愈大,时间愈快,汽车运输业劳动
2、生产率提高程度也就愈大。为了提高生产率的同时取得最大使用经济效率,就要研究车辆“最佳更新时机”的确定方法,并以此制定更新方案。,汽车使用寿命和更新时刻采用的计量单位通常有使用年限和使用里程。使用年限是按年平均行驶里程折算的汽车使用年限;使用里程是车辆开始使用到更新时的累计行驶里程数。专业运输车辆在以年限作为计量指标的同时,还常把使用里程作为参考性指标。,按使用年限或使用里程计量的汽车最佳更新时机,其确定方法的核心问题是计算汽车经济使用寿命,主要计算方法,低劣化数值法应用现值及资本回收系数估算法面值法以及最低计算费用法(判定大修与更新界限法),低劣化数值法的目标是保证设备一次性投资和各年经营费用
3、总和为最小。,假定汽车已行驶 L km该车原价Kn轮胎购置费为Ct汽车残值Cz,若令折旧费用K0=Kn-CtCz则行驶里程的折旧率为K0/L,随着汽车行驶里程的延长,单位里程折旧费不断减少。由于车辆有形磨损和无形磨损的加剧,而使车辆经营费用(维修、燃料、大修费用)增加,称为低劣化。设 b 为车辆低劣化的增加强度元/(1000km)2,则在行驶里程L内的平均低劣化数值为 bL/2。,车辆使用费用与行驶里程的关系,使用费用计算式为,y 车辆使用费用C0固定费用(指汽车运输成本中与行驶里程无关的费用),若要使车辆按行驶里程计算的平均使用费用最小,只需,求得汽车经济寿命:,换算成以年计算的经济寿命:,
4、Ln年平均行驶里程,103km,表示汽车低劣化的增加程度b值,可通过将营运费用(燃料费维修费大修均摊费)与汽车行驶里程进行回归计算后求得。由于回归计算所用的数据,是通过一个样本推断总体,所以应采用区间估计法推算出b值的置信区间,再由式,确定汽车经济使用寿命的变化范围。,方差2 无偏估计 为,若回归系数b是独立正态变量y1,y2,yn的线性组合,则仍为正态随机变量,回归值b的方差为,yixi 处的回归值,对于数理统计中一元线性函数的表达式,若线性回归的效果显著,则b值的置信区间为,T/2(n-2)自由度为(n-2)的t分布,置信水平N 样本数平均数,某省汽车运输公司对国产某汽车使用成本,某运输公
5、司对某型汽车使用数据进行统计分析为例(见上表),将行驶里程与总费用进行回归后,得到回归方程式为 y=0.21L+249.77,得到经济寿命里程,汽车低劣化的增加强度b=0.218元/(1000km)2设K0=10500元,由式,当年平均行驶里程L=3.4104km时,经济寿命年限TG=31/3.4=9.129(年)已知,=0.218,n=12,则,取置信水平=0.05,由t分布表,查得,故b的置信区间按式 计算,可得:0.179b0.257,当设K0=10500元不变时,置信水平=0.05,经济寿命里程的置信区间为,即,或 8年TG 10年,在计算汽车经济寿命时,若考虑到利率对年使用费用的影响
6、,就应把已发生费用或预期将要发生费用作现值计算。这样,就可在同一时间基点上,将所涉及各项费用按现值折算出总费用,称为年使用现值。,年使用现值折算公式:,P现值 S 未来值,即第T年付出的费用 i 利率1/(1+i)T 现值系数,设汽车使用过程中,平均每年陆续付出的费用为R(称为年当量使用费用),每年陆续付出费用的总和为P(以现在的费用值表示,称为现值)。则R与P之间的关系为,式中:,投资回收系数,年当量使用费用R,是为了使支出的现值可与每年由更新而获得的效益进行比较而提出的。当列表计算后,选出与年当量使用费用R最小的使用年限T时,即为经济寿命年限。,以表某省汽车运输公司对国产某汽车使用成本的统
7、计中的数据为例,取利率i=10%,b=0.218,K0=10500元,按式 列表计算,经济寿命为11年,结果见表9-5。考虑利率时汽车经济寿命计算值将比不考虑利率影响时稍有增加。,一种仅以账面数字作为分析基础的经济分析法。与低劣化数值相比,面值法可避免数据统计困难,容易为企业所理解和接受,适用于在实际生产中分析和预估本单位车辆的经济使用寿命。,假定以K0=30000元购入一辆新车,预计可使用10年,其价值将随着使用年限的增加而降低,而运行成本则增加。将这些有关的数据列表,并计算其总使用成本和在使用期间的每年平均使用成本,则可以得到年平均使用成本最低的使用年限,见表9-6。面值法通常列表计算。由
8、表中数据可看出,第5年末为最经济的寿命期,因为与其他几年比较这年的年平均使用成本为最低。,汽车年总使用成本(元)表9-6,汽车在使用一定时期后,人们需要在更新或者大修两种方案之间做出判断。可修而不修,过早更新,会损失因未达到折旧期而造成未折旧完的部分价值。应更新而未更新,过多地依靠大修使车辆重新工作,将增加维修费用,会使生产效率降低。一辆汽车需要在大修与更新两个方案之间进行判别分析后,再行决策。,为了更合理地选择大修或更新,常采用的判别式:,Ri车辆第 i 次大修的费用,元;Se使用成本的损失,其大小等于大修后车辆与新购车辆的运输成本差值乘以至下次大修期间的运输生产量(即经营损失),元;Kn新
9、车的原始价值,元;反映大修过后车辆运输生产率与新车辆至第一次大修之间运输生产率的比例关系;反映大修后车辆至下次大修前的行驶里程与新车第一次大修前行驶里程间的比例关系;Sa因更新而引起旧车未折旧完的损失之和,但更新是合理的。,若令更新与大修两方案耗费之差为B,则,设E 为大修耗费效果系数,即,当E 0 时,说明更新在经济上是合理的。,汽车大修次数与间隔里程、费用以及完好率的关系表 9-7,注:1.新车折价=14500元 2.汽车残值定为500元 3.单车折算吨位为3.33t(考虑到实载率、里程利用率、拖挂率 等因素,由统计数据求出),以表9-7中某运输公司数据为例,1.先判定是否需要进行第3次大修已知条件可由上表直接或间接得到,即,其中:800为折旧里程,单位为103km,大修耗费效果系数E为,因为E0,所以汽车进行第3次大修在经济上是合理的,2.再判断是否需要进行第4次大修,计算过程同前,即,因E0,所以汽车进行第4次大修是不经济的,应在运行到第4次大修里程时进行更新。,大修耗费系数E的计算结果为E=-0.03,返回,第五节,