ASB——Optical Communications - A View to the Future(1).ppt

上传人:文库蛋蛋多 文档编号:2228660 上传时间:2023-02-03 格式:PPT 页数:67 大小:7MB
返回 下载 相关 举报
ASB——Optical Communications - A View to the Future(1).ppt_第1页
第1页 / 共67页
ASB——Optical Communications - A View to the Future(1).ppt_第2页
第2页 / 共67页
ASB——Optical Communications - A View to the Future(1).ppt_第3页
第3页 / 共67页
ASB——Optical Communications - A View to the Future(1).ppt_第4页
第4页 / 共67页
ASB——Optical Communications - A View to the Future(1).ppt_第5页
第5页 / 共67页
点击查看更多>>
资源描述

《ASB——Optical Communications - A View to the Future(1).ppt》由会员分享,可在线阅读,更多相关《ASB——Optical Communications - A View to the Future(1).ppt(67页珍藏版)》请在三一办公上搜索。

1、,Optical Communications-A View to the Future,ECOC08,Brussels,September 22,2008,Rod Alferness,Chief Scientist,Bell LabsAlcatel-Lucent,All Rights Reserved Alcatel-Lucent 2007,A Worldwide Web of Optical Experts My Thanks!,Neal BerganoPietro BernasconiSebastien BigoDan BlumenthalY.K.ChenAndy ChraplyvyLa

2、rry coldrenChris DoerrRene EssiambreOlivier GautheronCary GunnJDSUHerwig Kogelnik,Ton KoonenKaren LiuDavid NielsenAdel SalehIraj SanieeChandrasekhar SethumadhavanKenichi SatoMeint SmitBob TkachRod TuckerDavid WelchAlan WillnerPeter Winzer,Predicting the Future?“The Americans have need of thetelephon

3、e,but we do not.We have,I think there is a world market for maybefive computers.-Thomas Watson,chairman of IBM,1943,plenty of messenger boys.”SirWilliam Preece,Chief Engineer,British Post Office,1878.,“the best way to predict the future is to invent it”Alan Kay,Zerox Parc,Apple Fellow,A View from EC

4、OC 1998,Plenary Talk-Rod Alferness,Photonic Transport,Photonic Networks,WDM/Point-to-Point Transport High Capacity TransmissionFixed WDM/Multipoint Network Fixed Sharing Between Multiple Nodes Passive Access of Wavelength ChannelsPhotonic XC and WADMReconfigured WDM/Multipoint Network Automated Conn

5、ection Provisioning Flexible Adjustment of Bandwidth Network Self-Healing/Restoration,Fiber AmplifierWavelength Multiplexer/Demultiplexer,Wavelength Add/DropWavelength Cross-Connect,CostperSTS-1,Mb/s,($K),ro,w,th,Total%Increase,M,ar,ke,tG,1995,1996,1997,1998,1999,2000,2001,10,000,000,1,000,000,100,0

6、00,$0.40,$0.20,0%,An Upward Bandwidth Spiral,A Self-Reinforcing System DrivingExceptional Market and Network Growth,Capacity per Fiber,$1.80$1.60,Cost per STS-1OC-48OC-192,10,0001,000100,$1.40$1.20,DWDM,Costs,Bandwidth,10,$1.00,Dropping,Increasing,11980,1985,1990,1995,2000,$0.80,$0.60,Applications,F

7、aster devicesNew Tech(DWDM&fiber),$-,1995,1996,1997,1998,1999,2000,Growing,Network Traffic(US),1800%,Increased integrationNew Tech(DWDM)Increasing volumesAn Efficient Transport Network Infrastructureis Essential to Keep Pace,1600%1400%1200%1000%800%600%400%200%,10%CAGR voice80%CAGR data,Where Are We

8、 Today-Undersea,Long,Haul,Metro and Access,Undersea Networks,Flattening the World and Enabling a Global Community!,Trans-Oceanic,120-130 Channels10 Gb/s,Adapted from Undersea Cable,KDD-SCS,2000 and Night Sky Artificial Light,Cinzano,Falchi,and Elvidge,MN_RAS,2001.,T,T,T,T,T,T,Mesh and Ring Reconfigu

9、rable WDM NetworksLeverage OAs and ROADM/OXCs for Reduced Network Cost,T,T,T,Commercial Long Haul Systems:,T,T,1-5 Tb/s 80 Wavelengths40 Gb/s,T,T,T,ROADM(ReconfigurableOptical Add/Drop Multiplexer),Terminal EquipmentRight Architecture When:Network Requires the Connectivity and CapacityNode to Node D

10、emands Justify Wavelength Express-Groom at EdgeROADM$Competitive with Terminal plus High Capacity Elect ADM,ROADM-Based Metro NetworksMajor Deployments Especially in US,TDM/SONET,ROADM,EoMPLSMetro Access,GigE,FCMobilityPOS,RPRBB,Mobility,FTTC ONU,Access,A Growing ROADM Market:JDSU,“20,000 Sold,2,500

11、 Last Qtr”Courtesy JDSU,ROADM EvolutionEnhances Functionality to Improve Remote Configuration andReduce Operation Costs.,Conventional,ROADM/XC,1x3 WSS ROADM,ROADM,In,Thru,In,WDM 1,In,Thru,WDM 2,Add,Drop,Drop,WDM 3,InAdd,Switch/VOA array,ThruDrop,Higher Capacity,More Flexible Connectivity,Smaller Foo

12、tprint andLower Cost.,Demarc,Gateway,ONT,Fiber Expanding into AccessBroadband to business,homes,and base stations,InternetRouter PON OLT,Passive Split:no electronics,no powerSingle ordual fiber,ONU/ONT,Residences or BusinessesPhone,ONU/ONT,Metro,Video,Networks,PSTNSwitchPSTN,AnalogVideoOverlay,Dedic

13、ated fiber(s)ONU/to each,PC,Central Office,home or business(same wavelengths),Multi-faceted video is drivingnetwork demand!,Economies with the Highest Penetration ofFiber-to-the-Home/Building+LAN,What Will Drive Optical Networks of the,Future,Current Environment,Some Shaping Forces,We Have“Flattened

14、 the World”,People and Multi-Nationals Require Even More“Connection”Growing Global“Digital”Population-“Reaching the Next Billion”Growing Global Optics Research Community to Address Challenges,Energy and Carbon Footprint will Drive Future Network Architecture,and Technology Decisions,Our Industry is

15、Very Different from 1998,No“Seed Corn”from Monopoly and PTT Research Labs Horizontal Industry Complicates Component Investment,“Over the Top”Companies Capturing Value of“The Network”,Powerful Forces Continue to Drive Capacity Demand Growth And it will become even more challenging.,Internet TV,Podcas

16、ting,Rich Multimedia,BlogsTiVo,MoreContent-CentricApplications,DistributedWorkspaceCloud Computing,Consumers,MassiveDataVolume,SoftwareMovies,MediaCompanies,Billionsof ContentSources,Live Broadcasts,HomeSurveillance,CellPhones,Sensors New Invention will be Essential to Meet the Demand!,Contemporary

17、Backbone Network,“Model Network”for the U.S.to Provide some Guidance,Network Traffic,16 PB/day(YE 2007),Growth Rate,40-60%CAGR,(30-110X in 10 years),“Typical”of 2-3 Networks in U.S.,Source:Stankey,AT&T Analyst Conference,2007.,INGRESS/EGRESSTRAFFIC(Tbps),AVERAGELINKLOAD(channels),Network Traffic and

18、 Link LoadsScenario:3 Tbps YE 2008+50%CAGR(4X/3.5year)55X/10 years,2000,2000,200,10Gs,40Gs,100Gs,200,202,TRAFFIC,1Ts 202,0.22008,2010,2012 2014,2016,0.22018,YEAR2018:Approaching 1 Petabit of Network Traffic,AVERAGENODELOAD,Network Traffic and Node LoadsScenario:3 Tbps YE 2008+50%CAGR(4X/3.5year)55X/

19、10 years,20000,20000,2000200,10Gs,40Gs,100Gs,2000200,2022008,2010,Tbps2012 2014,2016,2022018,TTD,A,YEARMean Optical Add(Drop)25%,“The Network”Going ForwardCommunication Directions and ChallengesONE Network Data/Optical,Wireline/Wireless Convergence Ethernet(with WDM)Will Blur the Metro/Enterprise Bo

20、undary Low-Cost Storage in the Network-a“Wildcard”Broadband Mobile Use Ubiquitous,Smaller Cells(eg,home femtos)Will Drive Optical Backhaul Use BB Wireline Network to Increase Wireless BW(Network MIMO)Mobility is the“Friend of Optical”-Backhaul CriticalGlobal Total Presence Symmetric Bandwidth to End

21、 Users Very High Resolution Video(3-D?)Displays,“Flattened the Globe”,“Better than being there”,The Network:“Learns”How to Optimize Itself Is the Computer;Is the Sensor Is Power Efficient and Affordable!,Ubiquitous Mobility will Drive More Optical InfrastructureMobile Society that Needs to Stay in T

22、ouchInter-base Coordinated Networks(Network MIMO)toMaximize Wireless BandwidthApplicable to Any Wireless Network(3G,4G,802.11,etc.),Backhaul,Will Drive Metro/Access BW,but Must be Cost-EffectiveChannel and userdata known by allcoordinated bases,Video of the Future?,Data Rates for 2D and Holographic

23、Video Displays,HiDef 2D Video(1920 x1080 pixels 24 fps):,1-2m display size,1.2Gb/s uncompressed,25 Mb/s compressed,HiDef Stereoscopic Video(2 x 1920 x1080 pixels 24 fps):1-2m display size,2.4Gb/s uncompressed,50 Mb/s compressed,HiDef Holographic Video-horizontal parallax only(400,000 x1080 pixels 60

24、 fps),0.5m display size,0.62 Tb/s uncompressed data rate,60 Gb/s compressed,100 Teraflops for real-time computer-generated video holograms,HiDef Holographic Video-full parallax(400,000 x400,000 pixels 60 fps),0.5m display size,230 Tb/s uncompressed,23 Tb/s compressed,Courtesy:Randy Giles,Progress in

25、 Optical Transmission-GettingAnother Factor of 50-100 on a single Fiber,-Challenging and Exciting!,SystemCapacity,Tb/s,Gb/s,u,-,e ch,gl,M),Optical Transmission Research Records:SlowingResearch Records,10010,Optical AmplifierWDM,?,1100,M,lti,ch,a,n,ne,l,Sin,anne(ETD,l,10,1986,1990,1994,1998,2002,2006

26、,YearCourtesy-Peter Winzer,Advanced Modulation Formats for 100 Gb/s,1 bit/symbol112 Gbaud(OOK,DB/PSBT,),2 bits/symbol56 Gbaud(DQPSK,pol-muxed OOK,),4 bits/symbol28 Gbaud(pol-muxed(D)QPSK,16-QAM,),OOKDPSK,ImExImEx,ReEx,ImEx,ReEx,ImEx,ReEx,ImEyReExReEyMulti-symbol to Reduce Baud Rate Reach,Lower Spect

27、ral Width to Reduce Impairments andAbility to Transit ROADMCoherent and OFDM Encoding Also Attractive withElectronic Transmission Impairment Mitigation,Ex Optical field,x-polarizationEy Optical field,y-polarization,SpectrumdB(dB),RelativePower,RelativePower(dB),C,PC,L,EDFAs,PC,L,PC,MZ,3-dB Coupler,D

28、elay,PC,I,I,T,I,L,PBS,PC,I,C/L,C/L,C/L,T,RX/,Control,nm,nm,25.6-Tb/s Transmission Research DemonstrationC1.C79,160 WDM channelsC and L bands:50-GHz gridPolarization multiplexing42.7-Gbaud(85.4-Gb/s)DQPSK ineach polarization yields 160 Gb/sin each WDM channel w/7%FEC3.2 b/s/Hz spectral efficiency,AWG

29、 ODDC/L TX 1 C/LAWGC2.C80AWG EVEN CC/L TX 2 C/LAWGL2.L8042.7 Gb/sClock/2MZ/2,L1.L79 PCRX In,N,NT,Spans(3)80km SSMF DCFT CN C/L C/LN Raman50GHz/100GHz InterleaversTunable 0.6-nm FiltersI C or L EDFA,CLClockRec.,240 km(three 80-km SSMFspans),Clock/2 42.7 Gb/s,NTPostcompensation C or L EDFA,PC PBS,OEQD

30、muxDelay Interferometer,EDFAs+distributed Raman,-10-20,9 THz 193 THz5%Bandwidth,-10-20,80 Gbit/s DQPSK,-30,C-Band,L-Band,-30,-40 80 channels 80 channels 22 x 80 Gbit/s x 80 Gbit/s-501520 1540 1560 1580 1600WavelengthWavelength(nm),-40-501548 1549 1550 1551WavelengthWavelength(nm)Gnauck et al.,OFC07

31、PDP 19,SpeedGb/s,Next Gen Ethernet:100GbEWhy 100G Ethernet?Access rates of 10G now for Server Farms,aggregationinto higher rates required More capacity per wavelength needed in the futurecore Growing demand for data traffic(IP TV/Video,etc.)Enabling higher port/switching capacities per footprint Fol

32、low the historical trend 100G1001010.10.01,1980,1985,1990,1995,2000,2005,2010,Year,Quadrature Phase Modulation:(D)QPSK for 100 Gb/sCourtesy R.Griffin,Integrated designs available,ImE,ReE,Drive signal,NRZ-DQPSK,E Optical fieldRZ-DQPSKCourtesy Peter Winzer,Network Upgrade at 100 G-Realizing the Valueo

33、f Wavelength Routed Ring and Mesh Networks,100 Gb/s DQPSK Field Trial on Legacy ROADM NetworkLeveraging Optical Network Value via Line Terminal Upgrade111 km96 km93 km106 km504 km98 km,100G Transmitter at theTampa Central Office,503-km Verizon field routeoperating LambdaXtreme,100G Receiver next to

34、LambdaXtremeat the Miami Central Office,Courtesy:Peter Winzer,The Next Factor of 20-40 Will be EveryChallenging!,Capacityperunitbandwidth,Imagpartoffield(mW1/2),(bits/s/Hz),n,S,n,it,li,0,3,2,1,0,Fiber Capacity EstimateCapacity per unit bandwidth(spectral efficiency)for 2000-kmtransmission,87654,ha,n

35、o,m,7 bits/s/Hz,Constellation Example4-ASK,M-PSK10,1-ASK,M-PSK4-ASK,M-PSK16-ASK,M-PSKASK:Amplitude-shift keying,M-PSK:M-ary Phase-shift keying5 10 15 20 25 30 35SNR(dB),40,-1-1 0 1Real part of field(mW1/2)Complex optical transmitterand receivers,For 2000 km,a spectral efficiency of 7 bits/s/Hz per p

36、olarization can be achievedwhich corresponds to an increase of about one order of magnitude in spectralefficiency over commercial systems Deployed systems can transmit 5 Tb/s over 2000 km.For such a distance,thecapacity limit of fiber is expected to be 500 Tb/s or 100 times the capacity ofcommercial

37、 systemsCourtesy:Rene Essiambre,Fiber and Amplifier Advances will be Essential!,www.bath.ac.uk/physics/,www.crystal-,www.nrl.navy.mil,P.Kaiser et al.,1972,Courtesty:Herwig Kogelnik,Expanding the Role of Optics in Networks,Real Time Switching/Routing,and,Whats Next for Photonic Switching in the Netwo

38、rk?,First,some learnings from Todays Optical Networks,Why WDM Networks Prevailed?,Reduced Network and Operations CostKey Optical Switch Characteristic?,Flow switch,Bit rate agnostic,slow(ms)acceptable,Reasonable next steps for phontonic switching?Address New Converged(WDM/Packet)Transport,Architectu

39、res,Explore the role of photonics to scale packet switch/,routers,Explore and drive optical technologies thatcost-effectively enable these directions,Transforming The Way We Use Light:,Next Generation Packet RoutersWavelength Switching,Arrayed waveguide grating(AWG)2D integrated diffraction grating

40、Commonly used as optical,Mux/Demux,Cheap piece of glass,Tunable 20-channel WC,MxNAWG,NxMAWG,EXC,1,2,N,1,2,WS:,N,1 1,1.N,3,1,N,1,Expanding Optical Switching to the Packet LayerHigh-capacity photonic packet switchData in the Optical Domain-Network(DOD-N),Load-balanced architecture forhigh-capacity opt

41、ical packet 1,2,Nswitch 3-stage architectureFast switching in the wavelengthdomainSimplified distributed scheduling,Highly scalable,1st StageSpace SwitchWS1WS2WSM wavelength switch,2nd StageTime SwitchHD1 TB1HD2 TB21.NHDN TBNHD:header detector,3rd StageSpace SwitchWS1WS2WSNTB:time buffer,WS1WS2WSM,1

42、,2,N1,2,N1,2,N,Well suited for opticalimplementation,OEO with el.cross-connectand fix wavelength TxRx TxRx Tx,Optical fabric based upon-switching and wavelength selectivecrossbar,N NRx TxOeO with fast tunable TxRx FTTx1.N Rx FTTxNRx FTTx,PassiveNxMCrossbar,How to do it with off-the-shelf parts How t

43、o skip the electronic cross-connect How to skip OEO with an all-opticalmonolithic chipCourtesy:Dave NeilsonPietro Bernasconi,Demarc,Gateway,FTTP Evolution:WDM PONLow-cost,integrated WDM technologies are key to cost-effective very-high broadband services to the homeDifferent bit rates,protocols,and s

44、ervices for each subEasy to upgrade sub without affecting othersGood subscriber isolationConsider PON for Metro Networks?Passive:,no electronics,ONU/,Residences,Internet,no power,ONT,or Businesses,Single or,OtherNetworks,Router,WDMOLT,dual fiberWDMMux/Demux,ONU/ONT,PhoneVideo,PSTNSwitchPSTN,Dedicate

45、d wavelength,PC,Central Office,&fiber(s)to eachhome or business,ONU/ONT,Extending Optics into the Home?,Extending Optical Reach into the Home?Versatile BB In-Home NetworksConverged in-home,backbone network,integrating wired&wireless servicesreduces installation andmaintenance efforts,Satellitedish/F

46、WA dish,opticalfibre,webcam,eases introduction andupgrading of services,HDTVmobile,PC,laptop,integration e.g.by WDM,Twisted PairnetworkOptical Fibrenetwork,RG,opticalfibre,VoIP,coax,Coax Cablenetwork,mp3download,faxprint,PDA,POFSMF,Converged In-HomeNetwork on Plastic Optical FiberCourtesy:Ton Koonen

47、,Integrated Technologies Will be Key,but which one?,10Log(S21)(dB,optical),A,3,-3,D,F,B,-6,Large-Scale DWDM DQPSKTx PIC 10 Channels x 40 Gb/sAWGBER=4E-421.5Gb/s NRZ,NestedMZM,Balanced ReceiverEyeS21 Frequency Response,I,Q,0,BER=5E-4,10 frequency-tunable DFB lasers withbackside power monitors,10(I)+1

48、0(Q)nested Mach-Zehndermodulator pairs,Tunable,Small-signal BW 20GHz,1 AWG111 integrated elements in total on chip,PM,-9,0,5,10,15,20,Frequency(GHz)Courtesy:Dave Welch,Infinera,16 QAM Modulator PIC3.1 mmStretched vertically for clarity,EAM#1-720-1800,EAM#2,Star coupler0.170.33,90,-720-90,0.330.17,Pu

49、lse carver EAM,EAM#3,EAM#4,Phase shifter/,(not used),attenuatorUse same output inlet width for all four ports.Input inlet width selected to achieve the 1:2:2:1 power splitting ratio.The phase shifters were used only for testing and were not used in the experimentC.R.Doerr,et al.,OFC,PDP20,2008.,Mono

50、lithic InP 107-Gb/s RZ-DQPSK Receiver,Photodiode pads,2 4 star coupler,1 2 MMI couplern-contact pads,Monitor photodiode pads,Current-injection phase shifter padThermo-optic phase shifter padC.R.Doerr et al.OFC 2008,100 Gb/s Digital circuitsInP D-FF up to 152 GHz clock speed,Mclk,Sclk,clk 2,divider-c

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号