《单片机设计外文翻译.doc》由会员分享,可在线阅读,更多相关《单片机设计外文翻译.doc(15页珍藏版)》请在三一办公上搜索。
1、毕业论文(设计)外文翻译题 目: AT89C51单片机 系部名称: 专业班级: 学生姓名: 学 号: 指导教师: 教师职称: 讲师 2012 年 3 月 9 日AT89C51AT89C51是美国ATMEL公司生产的低电压,高性能COMS8位单片机,片内含4Kbytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。主要性能参数
2、:与MCS-51产品指令系统完全兼容4K字节可重擦写Flash闪速存储器1000次擦写周期全静态操作:0Hz24MHz三级加密程序存储器1288字节内部RAM32个可编程I/O口线2个16位定时/计数器6个中断源可编程串行UART通道低功耗空闲和掉电模式功能特性概述: AT89C51提供以下标准功能:4K字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器。
3、串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。引脚功能说明: VCC:电源电压 GND:地 P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。 在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间即或内部上拉电阻。 在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 P1口:P1是一个带有内部上拉电阻的8位双向I/O口,
4、P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。 Flash编程和程序校验期间,P1接收低8位地址。 P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。 在访问外部程序存储器或16位地址的外部数据存储器(例如
5、执行MOVXDPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVXRI指令)时,P2口线上的内容在整个访问期间不改变。 Flash编程或检验时,P2亦接收高位地址和其它控制信号。 P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。 P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。 RET:复位输入。当振荡器工作时,RET引脚出现两个机器周期以上高电平将
6、使单片机复位。 ALE/:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。对Flash存储器编程期间,该引脚还用于输入编程脉冲()。即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。 如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。 :程序储存允许()输出是外部程序存储
7、器的读选通信号,当AT89C51由外部程序存储器取指令(或数据)时,每个机器周期两次有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的信号不出现。 EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000HFFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。 Flash存储器编程时,该引脚加上+12V的编程允许电源VPP,当然这必须是该器件是使用12V编程电压VPP。 XTAL1:振荡器反相放大器及内部时钟发生器的输入端。 XTAL2:振
8、荡器反相放大器的输出端。 Ready/:字节编程的进度可通过RDY/输出信号监测,编程期间,ALE变为高电平“H”后P3.4(RDY/)端电平被拉低,表示正在编程状态(忙状态)。编程完成后,P3.4变为高电平表示准备就绪状态。时钟振荡器: AT89C51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体 或陶瓷谐振器一起构成自激振荡器。 用户也可以采用外部时钟。这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。 由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号
9、的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。空闲节电模式: 在空闲工作模式状态,CPU保持睡眠状态而所有片内的外设仍保持激活状态,这种方式由软件产生。此时,片内RAM和所有特殊功能寄存器的内容保持不变。空闲模式可由任何允许的中断请求或硬件复位终止。 通过硬件复位也可将空闲工作模式终止。需要注意的是:当由硬件复位来终止空闲工作模式时,CPU通常是从激活空闲模式那条指令的下一条指令开始继续执行程序的,要完成内部复位操作,硬件复位脉冲要保持两个机器周期有效,在这种情况下,内部禁止CPU访问片内RAM,而允许访问其它端口。为了避免可能
10、对端口产生意外写入,激活空闲模式的那条指令后一条指令不应是一条对端口或外部存储器的写入指令。掉电模式: 在掉电模式下,振荡器停止工作,进入掉电模式的指令是最后一条被执行的指令,片内RAM和特殊功能寄存器的内容在终止掉电模式前被冻结。退出掉电模式的唯一方法是硬件复位,复位后将重新定义全部特殊功能寄存器但不改变RAM中的内容,在VCC恢复到正常工作电平前,复位应无效,且必须保持一定时间以使振荡器重启动并稳定工作。程序存储器的加密: 当加密位LB1被编程时,在复位期间,EA端的逻辑电平被采样并锁存,如果单片机上电后一直没有复位,则锁存起的初始值是一个随机数,且这个随机数会一直保存到真正复位为止。为使
11、单片机能正常工作,被锁存的EA电平值必须与该引脚当前的逻辑电平一致。此外,加密位只能通过整片擦除的方法清除。Flash闪速存储器的编程: AT89C51单片机内部有4K字节的Flash PEROM,这个Flash存储阵列出厂时已处于擦除状态(即所有存储单元的内容均为FFH),用户随时可对其进行编程。编程接口可接收高电压(+12V)或低电压(VCC)的允许编程信号。低电压编程模式适合于用户在线编程系统,而高电压编程模式可与通用EPROM编程器兼容。 AT89C51的程序存储器阵列是采用字节写入方式编程的,每次写入一个字节,要对整个芯片内的PEROM程序存储器写入一个非空字节,必须使用片擦除的方式
12、将整个存储器的内容清除。编程方法: 编程前,须根据表设置好地址、数据及控制信号。AT89C51编程方法如下: 1、在地址线上加上要编程单元的地址信号。 2、在数据线上加上要写入的数据字节。 3、激活相应的控制信号。 4、在高电压编程方式时,将EA/VPP端加上+12V编程电压。 5、每对Flash存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/编程脉冲。改变编程单元的地址和写入的数据,重复15步骤,直到全部文件编程结束。每个字节写入周期是自身定时的,通常约为1.5ms。数据查询:AT89C51单片机用数据查询方式来检测一个写周期是否结束,在一个写周期中,如需读取最后写入的那个字节,
13、则读出的数据最高位是原来写入字节最高位的反码。写周期完成后,有效的数据就会出现在所有输出端上,此时,可进入下一个字节的写周期,写周期开始后,可在任意时刻进行数据查询。程序校验:如果加密位LB1、LB2没有进行编程,则代码数据可通过地址和数据线读回原编写的数据。加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。芯片擦除:利用控制信号的正确组合并保持ALE/引脚10ms的低电平脉冲宽度即可将PEROM阵列(4K字节)和三个加密位整片擦除,代码陈列在片擦除操作中将任何非空单元写入“1”,这步骤需再编程之前进行。读片内签名字节:读签名字节的过程和单元030H、031H及032H的正
14、常校验相仿,只需将P3.6和P3.7保持低电平,返回值意义如下:(030H)=1EH声明产品由ATMEL公司制造(031H)=51H声明为AT89C51单片机(032H)=FFH声明为12V编程电压(032H)=05H声明为5V编程电压编程接口: 采用控制信号的正确组合可对Flash闪速存储阵列中的每一代码字节进行写入和存储器的整片擦除,写操作周期是自身定时的,初始化后它将自动定时到操作完成。AT89C51The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash pr
15、ogrammable and erasable read only memory (PEROM) and 128 bytes of data random-access memory(RAM). The device is manufactured using ATMEL Co.s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pin-out. The on-chip Flash allows the progr
16、am memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the ATMEL Co.s AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control appl
17、ications.Features:Compatible with instruction set of MCS-51 products4K bytes of in-system reprogrammable Flash memoryEndurance: 1000 write/erase cyclesFully static operation: 0 Hz to 24 MHzThree-level program memory lock1288-bit internal RAM32 programmable I/O linesTwo 16-bit Timer/CountersSix inter
18、rupt sourceProgrammable serial channelLow-power idle and Power-down modesFunction Characteristic Description:The AT89C51 provides the following standard features: 4K bytes of Flash memory, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a fu
19、ll duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and inte
20、rrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin Description:VCC: Supply voltageGND: GroundPort 0: Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port,
21、 each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs.Port 0 may also be configured to be the multiplexed low order address/bus during accesses to external program and data memory. In this mode P0 has internal pull ups. Port 0 also rec
22、eives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull ups are required during program verification.Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull ups. The Port 1 output buffers can sink/source four TTL inputs. When
23、1s are written to Port 1 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull ups. Port 1 also receives the low-order address bytes during Flash programming and
24、 verification.Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 2 pins that are externally b
25、eing pulled low will source current (IIL) because of the internal pull ups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory which uses 16-bit addresses (MOVX DPTR). In this application, it uses strong internal pull ups w
26、hen emitting 1s. During accesses to external data memory which uses 8-bit addresses (MOVX RI). Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3: Port 3 is an 8-bit
27、bi-directional I/O port with internal pull ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL)
28、 because of the pull ups.Port 3 also receives some control signals for Flash programming and verification.RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/: Address Latch Enable output pulse for latching the low byte of the address dur
29、ing accesses to external memory. This pin is also the program pulse input () during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during
30、each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is i
31、n external execution mode.:Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, is activated twice each machine cycle, except that two activations are skipped during each access to external data memory.EA/VPP:External Ac
32、cess Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executi
33、ons. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2:Output from the inverting oscillator amplifier.Ready/: The p
34、rogress of byte programming can also be monitored by the RDY/output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Oscillator Characteristics:XTAL1 and XTAL2 are the input and output, respective
35、ly, of an inverting amplifier which can be configured for use as an on-chip oscillator. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven.There are no requirements on the duty cycle of t
36、he external clock signal, since the input to the internal clocking circuitry is through a divide by two flip trigger, but minimum and maximum voltage high and low time specifications must be observed.Idle Mode:In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active
37、. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hardware reset, the device
38、 normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write t
39、o a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down Mode:In the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction
40、executed. The on-chip RAM and special function registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the special function registers but does not change the on-chip RAM. The reset should not be activated before VCC is
41、 restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock Bits:When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the lat
42、ch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.Programming the Flash:The AT89C51 is normally shipped with the on-chip F
43、lash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside the use
44、rs system, while the high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers.The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The AT89C51 code memory array is programmed byte-by-byte in either programming mode.
45、To program any nonblank byte in the on-chip Flash memory, the entire memory must be erased using the chip erase mode. Programming Algorithm: Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table .To program the AT89C51, t
46、ake the following steps:1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.5. Pulse ALE/once to program a byte in the Flash
47、array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.Data Polling: The AT89C51 features Data Polling to indicate the end of a writ
48、e cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data polling may begin any time after a write cycle has been initiated.Prog